Optimal Waveform for the Entrainment of a Weakly Forced Oscillator

Takahiro Harada, Hisa-Aki Tanaka, Michael J. Hankins, and István Z. Kiss
Physical Review Letters, vol. 105, no. 8, 088301, Aug. 2010.

Abstract

A theory for obtaining a waveform for the effective entrainment of a weakly forced oscillator is presented. Phase model analysis is combined with calculus of variation to derive a waveform with which entrainment of an oscillator is achieved with a minimum power forcing signal. Optimal waveforms are calculated from the phase response curve and a solution to a balancing condition. The theory is tested in chemical entrainment experiments in which oscillations close to and farther away from a Hopf bifurcation exhibited sinusoidal and higher harmonic nontrivial optimal waveforms, respectively.

Download PDF

Figures at a glance

References

  1. A. S. Pikovsky, M.G. Rosenblum, and J. Kurths, Synchronization? A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, England, 2001).
  2. A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 1980).
  3. L. Glass, Chaos 1, 13 (1991); R.A. Gray, Chaos 12, 941 (2002).
  4. G. B. Ermentrout, R. F. Galan, and N. N. Urban, Phys. Rev. Lett. 99, 248103 (2007).
  5. A. E. Granada and H. Herzel, PLoS ONE 4, e7057 (2009).
  6. N. Bagheri, J. Stelling, and F. J. Doyle, PLoS Comput. Biol. 4, e1000104 (2008).
  7. D. Forger and D. Paydarfar, J. Theor. Biol. 230, 521 (2004).
  8. D. Lebiedz et al., Phys. Rev. Lett. 95, 108303 (2005).
  9. V. Gintautas and A.W. Hu¨bler, Chaos 18, 033118 (2008).
  10. J. Moehlis, E. Shea-Brown, and H. Rabitz, J. Comp. Nonlin. Dyn. 1, 358 (2006).
  11. J. Ritt, Phys. Rev. E 68, 041915 (2003).
  12. J. Feng and H. C. Tuckwell, Phys. Rev. Lett. 91, 018101 (2003).
  13. R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications (McGraw-Hill, New York, 1997).
  14. A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
  15. Y. Kuramoto, Chemical Oscillators Waves and Turbulence (Dover, Mineola, New York, 2003).
  16. In this Letter we focus on the 1:1 resonant case. However, the presented theory is also valid for general m:n resonant cases.
  17. S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison- Wesley, Reading, MA, 1994), p. 105.
  18. There may be multiple locking ranges for f. For graphical examples, see p. 64 of [15]. In our setting, the largest range should be chosen for maximizing R in these situations.
  19. Here f are continuous and have continuous first derivatives, which belong to a function space with the norm ||・|| defined by ||f|| = max|f(θ)| + max|f'(θ)|. For details, see I. M. Gelfand and S.V. Fomin, Calculus of Variations (Dover, Mineola, New York, 2000), Chap. 1.
  20. The existence of the generic solution to balancing condition can be proven by partially integrating Z'(θ+π)Z(θ), resulting in <Z'(θ+π)Z(θ)> = 0. Note that this solution has Z2 symmetry.
  21. I. Z. Kiss et al., Science 316, 1886 (2007).
  22. I. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys. Rev. Lett. 94, 248301 (2005).
  23. M. T. M. Koper, Adv. Chem. Phys. 92, 161 (1996).
  24. Up to three harmonics are considered in the PRC. Addition of higher harmonics resulted in very minor changes of the waveform.
  25. Y. Kawamura et al., Phys. Rev. Lett. 101, 024101 (2008).