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a b s t r a c t

A physical limit of entrainability of nonlinear oscillators is considered for an external weak signal (forc-
ing). This limit of entrainability is characterized by the optimization problem maximizing the width of
the Arnold tongue (the frequency-locking range versus forcing magnitude) under certain practical con-
straints. Here we show a solution to this optimization problem, thanks to a direct link to Hölder’s inequal-
ity. This solution defines an ideal forcing realizing the entrainment limit, and as the result, a fundamental
limit of entrainment is clarified as follows. For 1:1 entrainment, we obtain (i) a construction of the global
optimal forcing and a condition for its uniqueness in Lp-space with p > 1, and (ii) a construction of the
global optimal pulse-like forcings in L1-space, and form:n entrainment (m ≠ n), some informations about
the non-existence of the ideal forcing. (iii) In addition, we establish definite algorithms for obtaining the
global optimal forcings for 1 < p ≤ ∞ and these pulse-like forcings for p = 1. These theoretical findings
are verified by systematic, extensive numerical calculations and simulations.

© 2014 The Author. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Entrainment of nonlinear oscillators (limit-cycle oscillators) to
an external forcing is a fundamental phenomenon of wide inter-
est with a long history and a large variety of applications [1]. Such
entrainment emerges in nonlinear oscillators, which adjust their
frequencies to that of an external forcing above a critical forcing
amplitude. In biology, circadian rhythm control [2] and exogenous
pace-maker control of the heart [3] by entrainment have beenwell
documented, and recent findings have revealed an entrainment
mechanism in insects aswell, in particularwith respect to auditory
sensitivity and selectivity of mosquitoes [4]. At the same time, en-
trainment to sinusoidal forcing in the field of engineering has been
well known for many years, as described by van der Pol [5] and
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Adler [6], where entrainment is referred to as injection-locking.
Recently, in addition to the classical setting of using sine wave in-
puts to oscillators, numerous cases of using a non-sinusoidal input
to oscillators have been described [7–9]. Since entrainment is tech-
nologically feasible without any additional circuitry, the need for a
high-frequency, low-power consumption injection-locked oscilla-
tor has garnered widespread attention for this classical technology
in recent years. For instance, there have beenmany studies related
to engineering oscillator entrainment, particularly in the fields of
microelectronics and nano-electromechanical systems [7–12].

An Arnold tongue, which shows the region where entrainment
has been realized (i.e., the locking range) in a forcing amplitude ver-
sus forcing frequency diagram, is important for indexing entrain-
ability, particularly with the injection-locking technique. Hence, in
many areas, the Arnold tongue is used for measuring entrainabil-
ity [1]. In its most common situation, entrainment adjusts the os-
cillation frequency of a nonlinear oscillator to that of an external
forcing and the ratio of the two frequencies becomes exactly 1:1
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(i.e., 1:1 entrainment). In addition to this 1:1 entrainment, themore
generalm:n (i.e.,m:n entrainment) is often observed for this ratio in
a narrower Arnold tongue [4,7,13]. For instance, in the case ofm:1
entrainment, the utility value is high where the injection-locking
technique is required, because it is possible to decrease the phase
noise, stabilizing the oscillating frequency of a high-frequency os-
cillator, simply by injecting 1/m low-frequency forcing, which is
relatively easily generated [7].

The nature of entrainment and entrainment processes, as typi-
fied by an Arnold tongue, can be described by the so-called phase
equation as being under a weak forcing limit, as in the case in Sec-
tion 2 below [14,15]. This description method may be one of the
most successful description methods offered to date, given its uni-
versality and applicability, as long as the forcing is not strong. (His-
torically, this phase equation is deemed as a natural generalization
of the well-known Adler’s equation [6] for sinusoidal forcing.) For
example, the nature of an Arnold tongue of m:n entrainment has
been analyzed using this phase equation [15], andwewill also con-
duct our analysis using this phase description.

As stated above, knowledge about entrainment has become
more multifaceted and more accurate over time, and practical ap-
plication is also becoming important. However, the notion of a
physical limit of this nonlinear phenomenon is still undeveloped.
In recent years, there have been studies aimed at engineering en-
trainment with an optimal input (forcing). These include studies
related to the determination of the optimal input for the establish-
ment of fast entrainment [16,17], circadian phase resetting [18,19],
the starting and stopping of oscillations [19,20], andmaximal reso-
nance (energy transfer) between a system and a forcing signal [21].
Control of deterministic [8,22] and stochastic [23,24] neuronal
spiking activity has been achieved with the use of a phase descrip-
tion approach combined with variational methods for optimiza-
tion of spiking time or the variance of firing rates. In addition to
these accomplishments, it has become possible to characterize the
minimal power forcingwaveform that produces the largest locking
range of nonlinear oscillators through the use of variational calcu-
lus [25]. However, currently, knowledge is lacking with respect to
the existence of a physical limit in relation to several problems of
entrainment, for example, whether it is possible to answer the fol-
lowing basic questions:

Q1 Does a power-reduced forcing (e.g., periodic injection
currentwith a limited squared average of its waveform, if
the forcing is given as a current) that produces the largest
locking range for 1:1 entrainment exist for a given limit
cycle oscillator? If it exists, is it uniquely obtained? Or is
there a definitive algorithm for finding it?

Q2 Is ‘the largest locking range’ as mentioned in Q1 also
feasible if an area-reduced forcing (e.g., injection current
with limited total absolute value of its waveform) or a
magnitude-reduced forcing (e.g., injection current with
limited amplitude) is considered?

A common thread connecting the above questions is relevant
to the fundamental limit of entrainment; if the existence of a
hidden simple mathematical structure were uncovered, then the
questions Q1 and Q2 could be answered in a unified and trans-
parent manner. In the present paper, we demonstrate such a
hidden structure, supported by theory and systematic simulations.

2. Basic definitions

The entrainment process of a limit-cycle oscillator in the weak
forcing limit can be modeled by

dψ
dt

= ω + ϵZ(ψ)f (Ωt), (1)
whereψ is the phase variable of the oscillator (ψ ∈ [−π, π] ≡ S),
Z is the phase response (sensitivity) function, and ω and Ω are
the natural frequency of the oscillator and the frequency of the
weak forcing ϵf (Ωt), respectively, following the notation in [14].
In general, m:n entrainment occurs when ω

m ∼
Ω

n is satisfied for
positive relatively prime integers m and n. In this situation, Eq. (1)
is further simplified by the method of averaging (and after setting
ϵ to 1) to

dφ
dt

= ∆ω + Γm/n(φ), (2)

where φ and ∆ω satisfy φ = ψ −
m
nΩt and ∆ω = ω −

m
nΩ ,

respectively, and the interaction function Γm/n(φ) is determined
by f and Z as

Γm/n(φ) =
1
T

 T

0
Z

m
n
Ωt + φ


f (Ωt)dt

=
1
2π

 π

−π

Z(mθ + φ)f (nθ)dθ

≡
1
2π

⟨Z(mθ + φ)f (nθ)⟩ , (3)

in which T =
2πn
Ω

(n times the natural period of the oscillator),
and θ ∈ [−π, π] represents Ωt

n . When considering the case of
m = n = 1, i.e., 1 : 1 entrainment, we will abbreviate Γm/n as
Γ , for simplicity. We note that in [15] Eq. (2) is also derived as a
direct consequence of Malkin’s theorem.

We consider a general class of periodic functions f (θ) as the
weak forcing, namely those satisfying the following constraint:

∥f ∥p ≡

|f (θ)|p

 1
p

= M, (4)

in which both p andM are positive constants; here we assume f ∈

Lp(S), namely that f is an Lp-function on S ≡ [−π, π]. In this paper,
we assume p ≥ 1, due to the following physical interpretation of
the constraint (4). First, for p = 2, Eq. (4) is equivalent to simply
⟨f 2⟩ = M2, i.e., the squared average (the power) of f is fixed atM2,
which is the case considered in [25], and this case corresponds to
the power-reduced forcing in Q1 given in Section 1. For p = 1, Eq.
(4) corresponds to the area-reduced forcing inQ2:


|f (θ)|


= M . On

the other hand, for p = ∞, Eq. (4) implies the magnitude-reduced
forcing inQ2, because ∥f ∥∞ = M: |f (θ)| ≤ M for a.e. θ ∈ S, since
∥f ∥∞ is the essential supremum of |f (θ)|. Thus, the constraint (4)
continuously covers various situations in a natural way.

In addition to Eq. (4), another constraint,

1
2π


f (θ)


= 0, (5)

i.e., a charge-balance constraint [8], is introduced here, because it
is required in practical situations where total injection (injected
current) should be 0.

Now, the entrained, frequency- and phase-locked states of the
forcing f are characterized as stable fixed points in Eq. (2), and the
following properties of (i) and (ii) are equivalent:

(i) Eq. (2) has a stable fixed point at φ = φ∗.
(ii)∆ω + Γ (φ∗) = 0 and Γ ′(φ∗) < 0.
If we change the value of ∆ω in (ii), a maximal interval

(∆ω+,∆ω−) is defined where a stable fixed point φ∗ exists, as
shown in Fig. 1; here a generic situation is assumed, in whichΓ (φ)
attains a unique maximum and a unique minimum respectively at
φ = φ+ and φ = φ−.

Notice, this does not exclude the possibility for multiple optima
of Γ . By ∆ω± + Γ (φ±) = 0 and Γ (φ+) > Γ (φ−), the maximum
minus the minimum of Γ (≡Γ (φ+) − Γ (φ−)) defines the width
of entrainable frequency detuning ∆ω ≡ ∆ω+ − ∆ω− > 0,
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Fig. 1. Locking range∆ω+ −∆ω− (=Γ (φ+)− Γ (φ−) ≡ R[f ]) for generic Γ .

i.e., the locking range, for which the phase-locked state is stably
maintained.

Thus, the functional

R[f ] = Γ (φ+)− Γ (φ−)

=
1
2π


Z(θ + φ+)f (θ)− Z(θ + φ−)f (θ)


(6)

is defined, indicating the width of the locking range for given f
and Z . Then, for maximizing R[f ] under the constraint (5), the
functional

J[f ] = R[f ] +
λ

2π


f (θ)


(7)

is naturally introduced, where λ is a Lagrange multiplier. Regard-
ing this optimization problem of J[f ], the following questions are
of fundamental interest, besides being important for practical ap-
plications, as mentioned in Section 1. First, does this optimization
problem have any solution? If so, how can we find the best solu-
tion? Namely, can we find all (possibly multiple) locally optimal
solutions and can we distinguish the best one among them? Some
of these questions are answered in the affirmative, and such opti-
mization problems can be solved in a unifiedway, as shown below.

3. Main results

In Refs. [8,9,17,25], optimal forcings have been designed for
various purposes and constraints. Their arguments are all based on
variational calculus, such as the Euler–Lagrange equation [26] or
Pontryagin’s minimum principle [27]. These frameworks generally
provide wide applicability for problems beyond the particular
entrainment problem we pose in Section 2. However, they have
a limitation: they are intrinsically local and heuristic, and their
results lack global information. Hence, by using only variational
calculus, it is hard to answer the questions of Q1 and Q2 posed
in Section 1 regarding global information of all possible optimal
forcings. The purpose of the present paper is to show that these
questions are answered in a definite way for a certain general class
of limit-cycle oscillators:

S1 For 1:1 entrainment under the constraints (4) and (5)
with 1 < p < ∞, the global optimal solution to the
functional (7) is explicitly obtained in Lp(S), if it exists.
Namely, its waveform is given by a closed formula of Z
(through Eqs. (57), (62) and (63)). Thus, Q1 is answered
in the affirmative (as the special case of p = 2).

S2 For the same 1:1 entrainment optimization with p = 1,
a unique upper limit of (7) (i.e., an ideal locking range)
exists for some generic Z , and this limit is asymptotically
realized by a particular pair of one positive pulse and one
negative pulse in L1(S), which is consistent with the re-
sult of S1 in the limit of p → 1. On the other hand, for p =

∞, the global optimal solution to the 1:1 entrainment op-
timization is explicitly obtained in L∞(S) if it exists, and
its closed formula is given in terms of Z (which resembles
the well-known bang–bang principle [27]). Again, this is
consistent with the limit of p → ∞ in S1. These results
give positive solutions to Q2.

The statements in S1 and S2 are consequences of four theorems
presented in Section 5. Some examples of resulting best forcings
(i.e., the global optimal forcing fopt, p defined by Eqs. (26) and (32)
in Section 5) for the Hodgkin–Huxley neuron model [17,28] are
shown in Fig. 2 for the cases of p = 1, 2, and p = ∞.

4. Some properties derived from Hölder’s inequality in prepa-
ration for later analysis

Here we focus on the well-known Hölder’s inequality (i.e.,
Theorem 3.5 in [29] for measurable functions and Theorem 3.8
in [29] for functions of f ∈ Lp(S) and g ∈ Lq(S)) in preparation for
the analysis in Section 5. Hölder’s inequality is stated as follows:

∥fg∥1 ≤ ∥f ∥p∥g∥q, (8)

for p and q satisfying 1 ≤ p, q ≤ ∞ and p−1
+ q−1

= 1. For
1 < p, q < ∞, the equality in (8), (i.e., ∥fg∥1 = ∥f ∥p∥g∥q), holds
if and only if there exist constants r and s, not both 0, such that
r|f (θ)|p = s|g(θ)|q (a.e. on S). Hereinafter, we call this simply the
equality condition.

From the setting in Section 2, f in the inequality (8) is now
regarded as the forcing waveform f in Eq. (1). Thus, the functional
J[f ] in Eq. (7) is related to Hölder’s inequality by plugging the
constraint (4) into (8):

2π · J[f ] = ⟨(Z(θ + φ+)− Z(θ + φ−)+ λ)f (θ)⟩ ≡ ⟨fg⟩ ≤ ⟨|fg|⟩
= ∥fg∥1 ≤ ∥f ∥p∥g∥q = M∥g∥q, (9)

where g(θ) ≡ Z(θ + φ+) − Z(θ + φ−) + λ, and q =
p

p−1 . The
constraints in Eq. (9) imply that there exists an upper bound of
J[f ], i.e., the ideal locking range R[f ] under the constraints of (4) and
(5). In addition, for the case of 1 < p < ∞ mentioned above, the
equality condition has to be satisfied for this ideal locking range to
be realized. Furthermore, for any given g , it is possible to construct
optimal f satisfying the equality condition r|f (θ)|p = s|g(θ)|q as
follows:

|f (θ)| =

 s
r

 1
p
|g(θ)|

1
p−1 > 0, or equivalently

f (θ) = σ(θ)
 s
r

 1
p
|g(θ)|

1
p−1 , (10)

where σ(θ) denotes any function having either ±1 values for θ ∈

S. (In Section 8.3, this σ(θ) is again used.) Notice, (s/r)1/p in Eq. (10)
is given by s
r

 1
p

=
∥f ∥p

∥g∥
q
p
q

=
M

∥g∥
1

p−1
q

, (11)

since r∥f ∥p
p = s∥g∥q

q ≠ 0. Thus, Eqs. (10) and (11) result in a
convenient form:

f (θ) = Mσ(θ)


|g(θ)|
∥g∥q

 1
p−1

. (12)

This form becomes a basic component for constructing ideal
solutions in Sections 4.1 and 4.2.

Below, we start from the case of 1 < p < ∞ in Section 4.1.
Next, we separately consider the two limits p → ∞ and p → 1
in Section 4.2. Finally, we verify their consistency with the cases of
p = ∞ and p = 1, respectively, in Sections 4.3 and 4.4.
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Fig. 2. Global optimal forcings maximizing the range of entrainment: (a) power-reduced forcing inQ1, (b) area-reduced forcing inQ2, and (c) magnitude-reduced forcing in
Q2, obtained for (d) the phase response function from the Hodgkin–Huxley phase model [17,28]. Here fopt, p (p = 1, 2, and ∞) is defined by Eqs. (26) and (32) in Section 5.
4.1. Case of 1 < p < ∞

First, an ideal solution is constructed from the building compo-
nent (12), as follows.

Lemma 1. For f ∈ Lp(S) and g ∈ Lq(S), suppose that ∥g∥q is a con-
stant, having a value independent of the choice of f . Then, a necessary
condition for f to maximize J[f ] is uniquely given by the following:

f∗, p(θ) =


M


|g(θ)|
∥g∥q

 1
p′

, for g(θ) ≥ 0

−M


|g(θ)|
∥g∥q

 1
p′

, for g(θ) ≤ 0


= Msgn[g(θ)]


|g(θ)|
∥g∥q

 1
p′

, (13)

where p′
= p − 1.

Hereafter, we call this solution (13) as an ideal solution since it re-
alizes a possible ideal entrainment of themaximum locking range. The
proof of this lemma is given in Section 8.1. Note that, in Lemma 1 and
its proof, we do not assume that the prime periods of f and g are nec-
essarily the same; their ratio can be m: n in general, and this amounts
to the case of m: n entrainment. Then, in such general m: n entrain-
ment, the question is whether the ideal solution of Eq. (13) is indeed
realized. A negative answer is obtained as follows.

Lemma 2. For f ∈ Lp(S) and g ∈ Lq(S), the ideal solution f∗, p in
Eq. (13) cannot exist in Lp(S) if m ≠ n.

The proof of this lemma is given in Section 8.2. Although this shows
a somewhat negative property for the generalm ≠ n case, it is possible
to construct (not the ideal , but) a certain optimal solution ifwe impose
some additional assumptions on f and g, which is reported in another
paper [30].

4.2. Limiting cases of p → ∞ and p → 1

As a natural extension of the results in Section 4.1, here both
limits of Eq. (13), p′

→ ∞ (p = p′
+ 1 → ∞) and p′

→ +0
(p = p′

+1 → 1), are considered. In the context of the optimization
problem posed in Section 2, as g is explicitly given by Z (through
Eqs. (57), (62), and (63) in Section 5.1), the following assumption
is natural:

0 < ∥g∥q < ∞ and 0 ≤ |g(θ)| < ∞, ∀θ ∈ S. (14)

Given this assumption, direct calculations lead to the following
lemma, as proved in Section 8.3.

Lemma 3. For f∗, p given by Eq. (13) and g ∈ Lq(S) satisfying Eq. (14),
as p → ∞,

f∗, p(θ) → Msgn[g(θ)], pointwise for ∀θ ∈ S (15)

and as p → 1,

f∗, p(θ) →

0, pointwise for θ ≠ θ∗
+∞, for θ = θ∗ with g(θ∗) > 0
−∞, for θ = θ∗ with g(θ∗) < 0

(16)

where θ∗ represents a maximal point of |g(θ)| in S.1

In Sections 4.3 and 4.4, the result in Lemma 3 is reconsidered
for the cases of p = ∞ and p = 1, respectively.

4.3. Case of p = ∞

First, we begin with the case of p = ∞; Hölder’s inequality (8)
for (p, q) = (∞, 1) becomes

∥fg∥1 ≤ ∥f ∥∞∥g∥1 = M∥g∥1 (17)

after plugging in the constraint ∥f ∥∞ = M . This implies that the
ideal solution f maximizing∥fg∥1 for a given constant∥g∥1 satisfies
∥f∗, ∞ g∥1 = M∥g∥1, and from this ideal solution f∗, ∞ is easily
found:

f∗, ∞(θ) = Msgn[g(θ)], a.e. on S (18)

which is consistent with the limit shown in Eq. (15) obtained as
p → ∞ in Section 4.2. The optimality and unique representation
of this solution is guaranteed as follows.

1 Here we have assumed that the maximal points have measure 0 in S. However,
even if these points have finite measure, i.e., there exists some interval filled with
these maximal points, we can repeat the same argument as above by replacing

⟨|ḡ(θ)|1+
1
p′ ⟩

1
1+p′ → +0 with ⟨|ḡ(θ)|1+

1
p′ ⟩

1
1+p′ → (measure of such points)/(2π).

In this case, f∗, p(θ) → ±2πM · (measure of such points)−1 for θ = θ∗ , instead of
f∗, p(θ) → ±∞ in Eq. (16).
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Lemma 4. For f ∈ L∞(S) and g ∈ L1(S), assume g(θ) ≠ 0, a.e. on
S. Then, the ideal solution f∗, ∞ defined in Eq. (18) gives the unique
maximum of the functional ∥fg∥1, and this is true only for 1:1 entrain-
ment.

The proof of this lemma is given in Section 8.4, where we resort
to direct verification of the unique representation of f∗, ∞, since the
Hölder’s inequality cannot hold with equality in the case of p = ∞.

4.4. Case of p = 1

Next, we consider the case of p = 1. In contrast to the case of
p = ∞ in Eq. (17), Hölder’s inequality for (p, q) = (1,∞) becomes

∥fg∥1 ≤ ∥f ∥1∥g∥∞ = M∥g∥∞, (19)

under the constraint ∥f ∥1 = M . In this case, f can have an arbi-
trarily tall, pulse-like shape; this is not always allowed in the pre-
vious cases of 1 < p ≤ ∞. For instance, if we consider a square
waveform with its height = ϵ−1 and its width = ϵ, the con-
straint ∥f ∥p = ϵ1−p becomes unboundedly large as f becomes
more pulse-like.

Now, suppose that an ideal solution fideal, 1(θ) having non-zero
values on an interval I ≡ [a, b] ⊂ S (and fideal, 1(θ) ≡ 0 on S \ I)
exists, which realizes the ideal locking range, i.e.,

⟨fideal, 1 g⟩ = ∥fideal, 1 g∥1 = ∥fideal, 1∥1∥g∥∞ = M∥g∥∞. (20)

However, such fideal, 1 cannot exist in L1(S) for a given generic g
under certain natural conditions. The proof of this property is given
in Appendix A.

Thus, instead of seeking such an fideal, 1 that realizes the ideal
locking range, here we design f∗, 1 having non-zero values on cer-
tain intervals such that the locking range of f∗, 1 becomes arbitrar-
ily close to the ideal one, i.e., f∗, 1 realizes ⟨f∗, 1 g⟩ = ∥f∗, 1 g∥1 →

M∥g∥∞, as the total length of the intervals (=O(ϵ)) of f∗, 1 goes to
+0. One such instance of f∗, 1 is given, referring to the limit Eq. (16)
in Lemma 3, by

f∗, 1(θ) = M
n

i=1

sgn[g(θ̄i)]∆(θ − θ̄i). (21)

Here we assume that multiple maxima θ̄i of |g(θ)| exist, i.e., |g(θ̄i)|
= |g(θ̄j)| for 1 ≤ i, j ≤ n, with n being the number of θ̄i ∈ S, and
|g(θ̄i)| = |g(θ̄j)| > |g(θ)| for any θ except for θ̄i, j. The function
∆(θ − θ̄i) is defined by

∆(θ − θ̄i) =


1

2nϵ
, for |θ − θ̄i| ≤ ϵ

0, otherwise.
(22)

With these definitions, the following lemma is obtained (the proof
is given in Section 8.5). Note, a natural example of the case of n = 2,
having two distinct θ̄1 and θ̄2, appears in Section 5.3, although this
multiple maxima seems a bit artificial at this stage.

Lemma 5. For f ∈ L1(S) and g ∈ L∞(S), if |g(θ)| has multiple
isolatedmaximal points θ̄i, i.e., there exist i1 ≠ i2 such that |g(θ̄i1)| =

|g(θ̄i2)| are maximal, and if g(θ) is continuous at each θ̄i, then
f = f∗, 1 in Eq. (21) realizes the ideal (largest) value of ∥fg∥1 =

M∥g∥∞ (2π× locking range R[f ]) as ϵ → 0.

5. Optimization of J[f ]

Having finished the preparations in Section 4, we are now
in a position to solve the optimization problem of J[f ] posed in
Section 2. First, note that Eq. (7), J[f ] = R[f ] +

λ
2π ⟨f (θ)⟩, can be

rewritten as

J[f ] = R[f ] +
λ

2π
⟨f (θ)⟩ =

1
2π

⟨(Z̄(θ)+ λ)f (θ)⟩ ≡
1
2π

⟨fg⟩, (23a)
where

Z̄(θ) = Z(θ +∆φ)− Z(θ) and ∆φ ≡ φ+ − φ−, (23b)

after moving to the new coordinate: θ + φ− → θ . Thus, the op-
timization of J[f ] is identical to the optimization of R[f ] under the
following constraints: ⟨f (θ)⟩ = 0 and ⟨|f (θ)|p⟩

1
p = ∥f ∥p = M .

Now, in Eq. (23a), g(θ) is given as

g(θ) = Z(θ +∆φ)− Z(θ)+ λ = Z̄(θ)+ λ. (24)

Wenote, at this stage both∆φ andλ are undetermined free param-
eters (which should be determined later). Namely, there is no room
for g to be affected by f . Thus, the assumption in Lemma 1 that g
and ∥g∥q are independent of f is satisfied, and the results of Lem-
mata 1–5 are applied to this optimization problem. Then, we con-
sider the three cases of 1 < p < ∞, p = 1, and p = ∞ separately,
where we construct global optimal solutions fopt, p, fopt, ∞, and
fopt, 1 to J[f ], andwedetermine the associated (∆φ, λ) for a given Z ,
as follows. Hereinafter, we abbreviate p′

+1
p′ and 1

p′ , respectively, as

α ≡
p′

+ 1
p′

> 1, β ≡
1
p′
> 0, (25)

where p′
= p − 1.

5.1. Case of 1 < p < ∞

For 1 < p < ∞ from Lemma 1, the global optimal solution
fopt, p is constructed from Eq. (13) and g(θ) = Z̄(θ)+ λ:

fopt, p(θ) = Msgn[Z̄(θ)+ λ]


|Z̄(θ)+ λ|

∥Z̄(θ)+ λ∥q

β
, (26)

where (∆φ, λ) now means some particular constants which
should be determined. Namely, we assume such an fopt, p to exist,
i.e., (∆φ, λ) exists for a given Z (which is later verified). Then, for
any given Z , the optimum of


fg


becomes

fopt, p(θ) g(θ)

= ∥fopt, p∥p∥g∥q = M⟨|Z̄(θ)+ λ|q⟩

1
q

= M

|Z̄(θ)+ λ|α

 1
α (=2π J[fopt, p]). (27)

In order to maximize J[fopt, p], the function

|Z̄(θ) + λ|α


should

be maximized by tuning the two free parameters ∆φ and λ in Eq.
(23a), since M and α in Eq. (27) are now fixed positive constants.
For this purpose, we define the following function:

F(∆φ, λ) ≡

|Z̄(θ)+ λ|α


=


|Z(θ +∆φ)− Z(θ)+ λ|α


. (28)

On the other hand, using (26), the charge-balance constraint (5)
becomes
sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β


= 0, (29)

because 1
2π


fopt, p(θ)


=

1
2π ∥Z̄(θ) + λ∥

−β
q


sgn[Z̄(θ)+ λ]|Z̄(θ)

+λ|β

, and ∥Z̄(θ)+λ∥q is a non-zero constant. Therefore, similarly

to (28), the following function is defined:

G(∆φ, λ) ≡

sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β


. (30)

Consequently, for maximizing F(∆φ, λ) under the constraint
G(∆φ, λ) = 0, the function

H(∆φ, λ) ≡ F(∆φ, λ)+ µG(∆φ, λ) (31)

is naturally introduced, where µ is a Lagrange multiplier. The
optimal solutions to Eq. (31) are obtained by Eqs. (53)–(55).
One of the main theorems in this paper can now be stated as
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follows:

Theorem 1. For 1 < p < ∞, suppose that Z(θ) satisfies the follow-
ing assumptions (i–iv):
(i) Z is twice differentiable (and hence, locally Lipschitz continu-

ous).
(ii) g(θ) = Z̄(θ) + λ = 0 given in Eq. (24) has (a finite number

of) isolated zeros θ∗,
(iii) H(∆φ, λ) defined in Eq. (31) has a finite number of isolated

optimal solutions (∆φ∗, λ∗), and
(iv) at each optimal solution of H, the bordered Hessian ([31])

|H(H)| ≠ 0, and Z̄ ′(θ∗) ≠ 0 for each θ∗ in (ii).
Namely, assume that Z is smooth and generic in the above sense;

then the global optimal forcing fopt,p ∈ Lp(S) is given by Eq. (26) if the
‘best’ solution (∆φ∗, λ∗) determined by Eqs. (53)–(55) exists; in this
case, F(∆φ∗, λ∗) defined in Eq. (28) is the largest among all possible
optima of F(∆φ∗, λ∗) under the constraint G(∆φ, λ) = 0.

The proof of this theorem is given in Section 9.1. Now, it is
natural to ask, besides the global optimal forcing, what sort of
other local optimal forcings are possible for a given generic Z(θ)?
Answering requires the solutions (∆φ∗, λ∗) to Eqs. (53) and (54) to
be characterized. Herewe show that (∆φ, λ) = (0, 0) and (±π, 0)
are always solutions to Eqs. (53) and (54).

First, the solution (0, 0) satisfies Eqs. (53) and (54), but this
solution corresponds to fopt, p(θ) ≡ 0 and Γ (φ) ≡ 0. Thus, the
solution (0, 0) corresponds to a trivial situation and so is hereafter
discarded whenever it appears.

Next, the solutions (∆φ∗, λ∗) = (±π, 0) always exist, as shown
below. Plugging ∆φ = π and λ = 0 into Eq. (53) and letting
I ≡


sgn[Z(θ + π)− Z(θ)]|Z(θ + π)− Z(θ)|βZ ′(θ + π)


, after

changing θ to θ + π , we obtain I = −⟨sgn[Z(θ + π) − Z(θ)]
|Z(θ + π)− Z(θ)|βZ ′(θ)⟩ since Z(θ) is a periodic function: Z(θ +

2π) = Z(θ), and Z ′(θ + 2π) = Z ′(θ). Summing the above two
equations for I , we have 2I = ⟨sgn[Z(θ + π)− Z(θ)]|Z(θ + π)−
Z(θ)|β [Z(θ + π)− Z(θ)]′


=

1
β+1 · [|Z(θ + π) − Z(θ)|β+1

] = 0.
Thus, I = 0 is obtained for (π, 0), and the solution (π, 0) to Eq. (53)
is verified. An analogous calculation verifies the solution (−π, 0).

Finally, again plugging ∆φ = ±π and λ = 0 into Eq. (54) and
letting J ≡


sgn[Z(θ ± π)− Z(θ)]|Z(θ ± π)− Z(θ)|β


respec-

tively for ∆φ = ±π , if the same procedure is repeated, then J =

−

sgn[Z(θ + π)− Z(θ)]|Z(θ + π)− Z(θ)|β


= −J is obtained.

Thus, J = 0 and the solution (±π, 0) to Eq. (54) is verified. �
In addition to the solutions (±π, 0), Z(θ) often allows other

solutions which can be numerically identified, as shown in the
example in Section 6.1.

5.2. Case of p = ∞

For p = ∞, from Lemma 4, the global optimal solution fopt, ∞ is
obtained by Eq. (18) and g(θ) = Z̄(θ)+ λ:

fopt, ∞(θ) = Msgn[Z̄(θ)+ λ], (32)

which results in

⟨fopt, ∞ g⟩ = M⟨|Z̄(θ)+ λ|⟩. (33)

Then, similarly to Eqs. (28), (30), and (31), the following functions,

F∞(∆φ, λ) ≡ ⟨|Z̄(θ)+ λ|⟩,

G∞(∆φ, λ) ≡ ⟨sgn[Z̄(θ)+ λ]⟩, (34)
H∞(∆φ, λ) ≡ F∞(∆φ, λ)+ µG∞(∆φ, λ),

are respectively defined for maximizing the locking range (= M
2π

F∞) under the charge-balance constraint (G∞ = 0). Note that
G∞(∆φ, λ) = 0 is obtained from Eqs. (5) and (32), andH∞(∆φ, λ)
is introduced for the same reason as Eq. (31). Thus, analogous to
Theorem 1, the following theorem is obtained:

Theorem 2. For p = ∞, suppose that Z(θ) satisfies the following
assumptions (i–iv):
(i) Z is twice differentiable,
(ii) g(θ) = Z̄(θ) + λ = 0 has (a finite number of) isolated zeros

θ∗,
(iii)H∞(∆φ, λ) in Eq. (34) has a finite number of isolated optimal

solutions (∆φ∗, λ∗), and
(iv) at each optimal solution of H∞, the bordered Hessian |H

(H∞)| ≠ 0, and Z̄ ′(θ∗) ≠ 0 for each θ∗ in (ii).
Namely, assume that Z is smooth and generic in the above sense;

then the global optimal forcing fopt, ∞ ∈ L∞(S) is given by Eq. (32) if
the best solution (∆φ∗, λ∗) determined by Eqs. (69a)–(69c) exists.

As the proof is essentially the same as the one of Theorem 1,
only the differences between them are addressed in Section 9.2.
Note, similarly to the case of 1 < p < ∞, the solutions (±π, 0)
exist, although this verification is omitted here, as it is identical to
that in the case of 1 < p < ∞. Other solutions to Eqs. (69a), (69b)
are numerically identified as shown in Section 6.2.

5.3. Case of p = 1

For p = 1, from Lemma 5, the ideal locking range is given by
M
2π ∥g∥∞ as ϵ → 0. Here this is realized for a concrete example of
g(θ) = Z̄(θ)+ λ given in Eq. (24) as follows.

Theorem 3. For p = 1, suppose that Z(θ) satisfies the following
assumptions (i), (ii), and (iii):
(i) Z is locally Lipschitz continuous,
(ii) g(θ) = Z̄(θ) + λ (= Z(θ + ∆φ) − Z(θ) + λ) achieves

the maximum and the minimum, respectively at some θ = θmax and
θ = θmin, and
(iii) the maximum of Z̄(θ)− the minimum of Z̄(θ) (=Z̄(θmax)−

Z̄(θmin)) is maximized for a particular value of ∆φ = ∆φmax and this
choice of ∆φmax (and its associated θmax, θmin) is unique for a given
Z.

Namely, assume that Z is continuous and generic in the above
sense; then the pair of two pulses

f∗, 1(θ) = −M[∆(θ +∆φmax)−∆(θ)] (35)

realizes the ideal locking range M
2π ∥g∥∞ (obtained in Lemma 5) as

ϵ → +0 (in Eq. (22)), where∆φmax satisfies∆φmax = θmax − θmin.

The proof of this theorem is given in Section 9.3. We note that,
in practical situations, the above∆φmax is numerically determined
for any given Z , as shown in the example of Section 6.3.

5.4. Case of m:n entrainment

In the analysis starting from Eq. (23a), we have implicitly
assumed 1:1 entrainment. Now we consider what happens for
general m:n entrainment. As mentioned in Section 3, if m ≠ n,
neither the non-trivial ideal solution given by Eq. (26) for 1 < p <
∞ nor the one given by Eq. (32) for p = ∞ is realized. However,
for the case of m:1 entrainment, an ‘asymptotically ideal’ forcing
(i.e., a forcing asymptotically realizing the ideal locking range) is
constructed as follows.

Fig. 3 illustrates how an asymptotically ideal forcing is con-
structed by starting fromm copieswith the ideal forcingwith prime
period T0 for 1:1 entrainment and adding a certain small perturba-
tion such that the m copies of the forcing become a single forc-
ing with prime periodmT0 while still satisfying the constraints (4)
and (5). Thus, the resulting locking range becomes arbitrarily close
to the ideal one (which is realized only in 1:1 entrainment) as the
perturbation becomes smaller, since the associated Γm/1 in Eq. (3)
becomes arbitrarily close to the Γ1/1 of the best forcing for 1:1 en-
trainment.
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Fig. 3. Schematic illustrations of forcing waveforms for m:1 entrainment (e.g.,
m = 2). The solid blue line shows the m (=2) copies of the ideal forcing f in Eq.
(26) with prime period T0 . The dotted black line shows a slightly perturbed forcing,
constructed from them copies of the ideal forcing, with prime period 2T0 .

Z
 (

  )

Fig. 4. Graph of Z(θ) in (36).

In addition, Lemmata 1 and 2 imply that it is not rewarding to
search for any other ‘ideal’ forcings for m:n entrainment besides
Eq. (26), since the ideal forcing is uniquely given by Eq. (26) for
any m ≠ n (Lemma 1) and actually does not exist except for the
trivial zero forcing (Lemma 2). Thus, the above argument proves
the following:

Theorem 4. Assume m and n are positive relatively prime integers
and m ≠ n. For 1 < p < ∞, suppose that Z(θ) satisfies the assump-
tions in Theorem 1, and for p = ∞, suppose that Z(θ) satisfies the
assumptions in Theorem2. Then the ideal forcing (26) for 1 < p < ∞

does not exist for the general m: n entrainment (in Lp(S)), and neither
does the ideal forcing (32) for p = ∞ (in L∞(S)). However, if n = 1,
an ‘asymptotically ideal’ forcing is constructed for 1 < p < ∞ (or
p = ∞) from m copies of the forcing (26) (or (32)) plus some ar-
bitrary small perturbation such that both constraints (4) and (5) are
satisfied (as illustrated in Fig. 3).

6. Numerical verification of optimal forcing waveforms

Here some concrete examples of Z are considered to numeri-
cally verify the theoretical results in Section 5. For this purpose,
first, a randomly generated Z(θ) as shown in Fig. 4 is chosen, which
includes some higher harmonics, as usually observed in chemical
or circadian oscillators:

Z(θ) = 0.745705 cos θ − 0.666276 sin θ − 0.134064 cos 2θ
− 0.940493 sin 2θ − 0.222622 cos 3θ
+ 0.768401 sin 3θ. (36)

For this particular Z(θ), a systematic numerical study is car-
ried out to identify the optimal solutions of J[f ], as shown in Sec-
tions 6.1–6.3 below. In addition to the example of (36), the weakly
stimulated Hodgkin–Huxley neuronmodel, whose phase response
function is given in [17,28], is also considered:

Z(θ) = 0.176116 + 0.371736 cos θ − 0.740283 sin θ
− 0.819478 cos 2θ + 0.00225226 sin 2θ
+ 0.181875 cos 3θ + 0.403816 sin 3θ
+ 0.111446 cos 4θ − 0.0892503 sin 4θ
− 0.0127103 cos 5θ − 0.0165083 sin 5θ. (37)
As the procedure for obtaining all (local and global) optimal forc-
ings is the same for both examples (36) and (37), we explain
the case of (36) in detail, and for the case of (37), we omit
detailed numerical data here and just mention the numerical
results.

6.1. Case of 1 < p < ∞ for the example of (36)

For the example of (36), here we numerically identify the
optimal forcings for the case of 1 < p < ∞, as follows. The case
of p = ∞ and the case of p = 1 are respectively considered in
Sections 6.2 and 6.3.

To determine the parameter pair (∆φ, λ) of fopt, p(θ) in Eq.
(26), we have numerically solved Eqs. (53) and (54) for (∆φ, λ),
and checked if the obtained (∆φ, λ) satisfies Eq. (55); the results
are listed in Table 1. But, first, to capture the global features of
Eqs. (53) and (54), we begin by plotting the solution curves of
(∆φ, λ) for Eqs. (53) and (54), respectively, in order to locate all
crossing points along these solution curves. These are shown in
Fig. 5 for the cases of p = 1.01, 1.1, 2, 5, and 10. In addition,
Fig. 6 shows a magnification of Fig. 5 around each crossing point
for the case of p = 1.01. Having located all crossing points, we
can determine their position as precisely as possible by using the
Newton–Raphsonmethod, as below. The above steps constitute an
algorithm for obtaining the optimal forcing for 1 < p < ∞.

Although these solution curves look a bit complicated, some
information about them can be obtained analytically, as follows.
For Eqs. (53) and (54), respectively, let ⟨sgn[Z̄(θ) + λ]|Z̄(θ) +

λ|βZ ′(θ + ∆φ)⟩ ≡ Sp(∆φ, λ) and ⟨sgn[Z̄(θ) + λ]|Z̄(θ) + λ|β⟩ ≡

Tp(∆φ, λ) (=G(∆φ, λ) in Eq. (30)). Then, it is clear that Tp(∆φ, λ)
is a C1 function, since both partial derivatives of Tp(∆φ, λ) exist,
as shown in Eqs. (48) and (49), and are continuous, as proved in
Appendix F. Moreover, ∂Tp(∆φ,λ)

∂λ
= β⟨|Z̄(θ) + λ|β−1

⟩ > 0 for
any ∆φ from Eq. (51f). Thus, by the implicit function theorem, a
C1 function λ(∆φ) satisfying Tp(∆φ, λ(∆φ)) = 0 is defined in
the neighborhood of every ∆φ∗ satisfying Tp(∆φ∗, λ(∆φ∗)) = 0.
In addition, this λ(∆φ) is single-valued, since ∂Tp(∆φ,λ)

∂λ
> 0 and

Tp(∆φ, λ) → ±∞(λ → ±∞) for any∆φ. Therefore, the solution
curve Tp = 0 for Eq. (54) is obtained as a C1, single-valued function
λ(∆φ) over S = [−π, π], as observed in Fig. 5. �

On the other hand, in Sp(λ,∆φ) = ⟨sgn[Z̄(θ) + λ]|Z̄(θ) +

λ|βZ ′(θ +∆φ)⟩, the term sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β → ±∞(λ →

±∞). However, Sp(λ,∆φ) does not necessarily go to ±∞ as λ
goes to ±∞, since the above term is weighted by Z ′(θ + ∆φ).
Thus, depending on the value of ∆φ, Sp(λ,∆φ) = 0 might have
no solution for λ. In addition, the solution curve Sp = 0 can be
complicated, as observed in Fig. 5.

Next, we solve Eqs. (53) and (54) using the Newton–Raphson
method. The Jacobi matrices for Eqs. (53) and (54) are obtained
from Eq. (51) and the initial values of the iteration are chosen from
the numerically obtained crossing points of Sp = 0 and Tp = 0
mentioned above. The obtained results for p = 1.01, 1.1, 2, 5,
and 10 are listed in Table 1. In Table 1(a), the seven obtained
solutions for p = 1.01 are listed. There being seven solutions
implies that the total number of solutions is 7×2+1−1 = 14, since
there is an extra trivial solution (0, 0) corresponding to the ‘+1’ in
‘7×2+1−1’, two solutions (±π, 0) are identified, corresponding
to the ‘−1’, and as mentioned in Section 9.1.2, a symmetry
(∆φ, λ) ↔ (−∆φ,−λ) exists, which corresponds to the ‘×2’.
Note that this kind of argument regarding the total number of
solutions is not possible in the Euler–Lagrange formalism due to
its locality in its mathematical nature, and there is no guarantee of
finding all possible solutions (in a rigorous sense).

For each of the seven solutions shown in Fig. 5(a) and Fig. 6,
the locking range is obtained from Eq. (27) by setting M = 1 and
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Table 1
Solutions (∆φ, λ) to Eqs. (53) and (54), their associated locking ranges, and |H(H)|: (a) p = 1.01, (b) p = 1.1, (c) p = 2, (d) p = 5, and (e) p = 10. Here ‘theory’ and ‘GA’
respectively indicate the results from theoretical prediction and a direct GA search.

(a) p = 1.01
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 3.0235540, locking range (GA) = 3.0234959, |H(H)| = 4.9714938 × 10149 (>0)
solutions 2: (∆φ, λ) = (−2.7635739,−0.5681094), locking range (theory) = 2.8134444, |H(H)| = −8.1140349 × 10140 (<0)
solutions 3: (∆φ, λ) = (−2.6739647,−0.5640646), locking range (theory) = 2.8185146, locking range (GA) = not found, |H(H)| = 1.6695215 × 10140 (>0)
solutions 4: (∆φ, λ) = (−2.4248451,−0.4290781), locking range (theory) = 2.8022469, |H(H)| = −3.2519168 × 10139 (<0)
solutions 5: (∆φ, λ) = (−1.9047696, 0.5266019), locking range (theory) = 2.8935164, locking range (GA) = 2.8933493, |H(H)| = 4.0131891 × 10143 (>0)
solutions 6: (∆φ, λ) = (−1.6467727, 0.9915109), locking range (theory) = 2.8644525, |H(H)| = −1.5284447 × 10143 (<0)
solutions 7: (∆φ, λ) = (−1.2455892, 0.8126150), locking range (theory) = 3.1775924, locking range (GA) = 3.1771833, |H(H)| = 1.8067790 × 10156 (>0)

(b) p = 1.1
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 2.5532186, locking range (GA) = 2.5501987, |H(H)| = 3.5228057 × 1014 (>0)
solutions 2: (∆φ, λ) = (−2.5402401,−0.4637718), locking range (theory) = 2.4093452, |H(H)| = −3.6750468 × 1013 (<0)
solutions 3: (∆φ, λ) = (−1.2720412, 0.7924492), locking range (theory) = 2.6747648, locking range (GA) = 2.6622400, |H(H)| = 1.9969242 × 1015 (>0)

(c) p = 2
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.8110770, locking range (GA) = 1.8110770, |H(H)| = 3.1500000 (>0)
solutions 2: (∆φ, λ) = (−2.2828510, 0.0000000), locking range (theory) = 1.6695480, |H(H)| = −3.6826624 (<0)
solutions 3: (∆φ, λ) = (−1.3864149, 0.0000000), locking range (theory) = 1.8807507, locking range (GA) = 1.8807341, |H(H)| = 6.2100798 (>0)

(d) p = 5
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.6404898, locking range (GA) = 1.6412232, |H(H)| = 0.1105319 (>0)
solutions 2: (∆φ, λ) = (−2.2037685,−0.0579161), locking range (theory) = 1.4257440, |H(H)| = −1.4058183 (<0)
solutions 3: (∆φ, λ) = (−1.4058325,−0.4169387), locking range (theory) = 1.6581230, locking range (GA) = 1.6550836, |H(H)| = 0.3035783 (>0)

(e) p = 10
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.6035454, locking range (GA) = 1.6048877, |H(H)| = 0.0366672 (>0)
solutions 2: (∆φ, λ) = (−2.1974857,−0.0725039), locking range (theory) = 1.3690487, |H(H)| = −1.4298989 (<0)
solutions 3: (∆φ, λ) = (−1.4225536,−0.5477614), locking range (theory) = 1.6052778, locking range (GA) = 1.6032058, |H(H)| = 0.3040965 (>0)
|H(H)| is evaluated, as shown in Table 1(a). From these results, the
following facts are now clarified.

(i) The global optimal solutions are (∆φ, λ) ∼ (−1.245, 0.812)
(solution 7) and its symmetric counterpart (1.245,−0.812).

(ii) Solutions 1, 3, and 5 are all local optimal, since |H(H)| > 0.
In contrast, solutions 2, 4, and 6 are not, since |H(H)| < 0 [31].

Figs. 7(a)–(f) show R(∆φ) along the solution curve Tp parame-
terized by ∆φ, which clearly characterizes the optimality of solu-
tions and their associated locking ranges for p = 1.01, 1.1, 2, 5,
10, and ∞, respectively. Since R(∆φ) is an even function, we plot
only the half for∆φ ∈ [−π, 0]. As we see in Fig. 7(a), optimality of
R(∆φ) for each solution is consistent with facts (i) and (ii) above.

To check the above numerical results, we also perform a brute
force search of optimal forcings with a genetic algorithm (GA)
directly for Eq. (2) under the constraints of (4) and (5) with M =

1. In doing so, we discretize the forcing f with sufficiently small
mesh sizes, as shown by fopt(θ)GA in Figs. 8–12, where a perfect
match is observed between the theoretical predictions (the above
numerical results) and the direct GA search.

Returning to the case of p = 1.01 discussed previously, as
shown in Fig. 8, the locally optimal solutions 1, 5, and 7 are cap-
tured by the GA search, but the non-optimal solutions 2, 4, and
6 are not. Also, for a technical reason, our GA search is not able
to capture the locally optimal solution 3. The reason can be un-
derstood as follows. By plotting the Γ (φ) associated with this
solution 3 (Fig. 13), we can see that the locking range R for this
particular solution 3 (∆φ ∼ −2.6739) is suboptimal, since there is
one other potentially optimal R̄, which gives the actual bestR of this
Γ (φ), although solution 3 is locally optimal in the two-parameter
space (∆φ, λ). The problem arises because our GA algorithm al-
ways evaluates only the best R̄ during its search, and so solution 3,
like non-optimal solutions 2, 4, and 6, are ignored; therefore, solu-
tion 3 does not appear in Fig. 8(b).

6.2. Case of p = ∞ for the example of (36)

Similarly to the case of 1 < p < ∞, Eqs. (69a) and (69b) are
solved for (∆φ, λ) to determine fopt, ∞(θ) in (32). Again we begin
by plotting the solution curves of (∆φ, λ) for Eqs. (69a) and (69b),
which are shown in Fig. 14. Having located all crossing points,
their precise positions are determined with the Newton–Raphson
method. The above steps constitute an algorithm for determining
fopt, ∞.

Notice that, in the shaded regions, ⟨sgn[Z̄(θ)+λ]Z ′(θ+∆φ)⟩ ≡

0 holds since Z̄(θ) + λ becomes always positive (or negative) and
therefore ⟨sgn[Z̄(θ) + λ]Z ′(θ + ∆φ)⟩ = ⟨Z ′(θ + ∆φ)⟩ = 0 (or
−⟨Z ′(θ + ∆φ)⟩ = 0). In this case, p = ∞, the total number of
the solutions is 3 × 2 + 1 − 1 = 6, which includes the trivial
solution (0, 0). Precise values of the solutions to Eqs. (69a) and
(69b) are obtained by the Newton–Raphson method, in which the
Jacobi matrices of Eqs. (69a) and (69b) are given by Eq. (68). The
results are listed in Table 2, in which we observe a perfect match
between the theoretical results from Eq. (32) and the GA search
results, which is also seen in Fig. 15.

6.3. Case of p = 1 for the example of (36)

First, for the case of p = 1, the two optimal parameters ∆φ
and λ are given by∆φ = ∆φmax and λ = −

1
2 [Z̄(θmax)+ Z̄(θmin)],

respectively, from the argument in Section 5.3 and from Eq. (74)
in Section 9.3. This ∆φmax is numerically obtained as follows: We
plot the graph Γ0(φ) = M[Z(φ + ∆φ) − Z(φ)] for a given ∆φ ∈

[−π, 0], and then gradually vary this parameter, again plotting the
graph of Γ0(φ) for each value. Thus, the locking range R = (the
maximum of Γ0) − (the minimum of Γ0) is obtained as a function
of ∆φ, as shown in Fig. 16a. Note that R(∆φ) is an even function,
due to the symmetry of the forcing (35), and so we plot only half
of it in Fig. 16a. Also, λ is determined once ∆φmax is obtained;
∆φmax determines θmax and θmin from the graph of Γ0, which is
described in Section 9.3. The above steps constitute an algorithm
for obtaining ∆φmax and λ, which results in the global optimal
forcing fopt, 1. As shown in Fig. 16a, the resulting graph R(∆φ) for
p = 1 is indistinguishable from the graph of R(∆φ) for p = 1.01
in Fig. 7(a), which shows that the best ∆φ is around −1.245 and
the second best ∆φ is −π . We also note this value of optimal
∆φ ∼ −1.245 is close to, but slightly different from, the phase
difference between the maximum and minimum of Z(θ), which is
about −1.3660, as measured in Fig. 4.

Next, we verify the above predictions about the best impulsive
forcing through systematic numerical simulations as follows. First,
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Fig. 5. Solution curves Sp for Eq. (53) and solution curve Tp for Eq. (54): (a) p = 1.01, (b) p = 1.1, (c) p = 2, (d) p = 5, and (e) p = 10.
Table 2
Solutions (∆φ, λ) to Eqs. (69a) and (69b), their locking ranges, and |H(H)|(p = ∞).

solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.5726076, locking range (GA) = 1.5708262, |H(H)| = 0.0097912 (>0)
solutions 2: (∆φ, λ) = (−2.1941055,−0.0833533), locking range (theory) = 1.3214593, |H(H)| = −1.3194747 (<0)
solutions 3: (∆φ, λ) = (−1.4456283,−0.6738817), locking range (theory) = 1.5585141, locking range (GA) = 1.5617386, |H(H)| = 0.0995980 (>0)
we check if this R(∆φ) for p = 1 is consistent with the locking
range directly obtained from the phase model (2) with Γ0(φ) in
(77). The results are plotted as +s in Fig. 16b and show perfect
agreement with the theoretical prediction. Similarly, the results
from Eq. (1) with the weak impulses of (75) (width = 0.07, am-
plitude = 1.14) exhibit a perfect match with the theory, as shown
by the×s in Fig. 16b. In addition, Fig. 17 shows the Arnold tongues
for five different impulsive forcings (35) with ∆φmax being set to
−π, − 2.12058, − 1.72788, − 1.24470, and −0.62832. Notice
that we include non-optimal values, in order to compare locking
ranges. Numerical simulations of Eq. (1) are carefully carried out by
using the 4th-order Runge–Kuttamethodwith a timestep of 0.001.
The result shows the predicted best impulsive forcing is indeed the
best among these five forcings.
6.4. Case of the Hodgkin–Huxley neuron model (37)

Repeating the same procedure as in Sections 6.1–6.3, we obtain
all the optimal forcings for the Hodgkin–Huxley neuron model in
(37) as follows. For the cases of 1 < p < ∞ and p = ∞, the pa-
rameter pairs (∆φ, λ) in fopt, p(θ) are obtained as listed in Table 3.
These results show that for the example of (37) the number of opti-
mal forcings is always less than that of the previous example, (36).
This seems to reflect the fact that Eq. (37) has weaker higher har-
monics than those in Eq. (36), making the solution curves Sp and Tp
relatively simple.

Finally, for the case of p = 1,∆φmax is numerically obtained as
∆φmax ∼ −1.36094 by the same procedure as in Section 6.3. Note
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Fig. 6. Magnified solution curves of Eqs. (53) and (54) in the neighborhood of each crossing point (p = 1.01). For better resolution, a new coordinate (∆φ′, λ′) is introduced
in the graph for solution 5:∆φ′

= cos π6 ·∆φ − sin π
6 · λ and λ′

= sin π
6 ·∆φ + cos π6 · λ.
Table 3
Solutions (∆φ, λ) to Eqs. (53) and (54), their associated locking ranges, and |H(H)|: (a) p = 1.01, (b) p = 1.1, (c) p = 2, (d) p = 5, (e) p = 10, and (f) p = ∞. Here ‘theory’
and ‘GA’ respectively indicate the results from theoretical prediction and a direct GA search.

(a) p = 1.01
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 2.2585700, |H(H)| = −6.4861331 × 10110 (<0)
solutions 2: (∆φ, λ) = (−1.3649363, 0.57040837), locking range (theory) = 2.7613265, locking range (GA) = 2.7609771, |H(H)| = 5.7290424 × 10137 (>0)

(b) p = 1.1
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.9165986, |H(H)| = −1.2376531 × 1010 (<0)
solutions 2: (∆φ, λ) = (−1.3980649, 0.54721054), locking range (theory) = 2.3342603, locking range (GA) = 2.3338741, |H(H)| = 2.1545556 × 1013 (>0)

(c) p = 2
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.3287487, |H(H)| = −0.54999893 (<0)
solutions 2: (∆φ, λ) = (−1.6150653, 0.0000000), locking range (theory) = 1.4926698, locking range (GA) = 1.4925093, |H(H)| = 2.153595723 (>0)

(d) p = 5
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.21853096, locking range (GA) = 1.2177683, |H(H)| = 0.017074170 (>0)
solutions 2: (∆φ, λ) = (−2.5085617,−0.23864305), locking range (theory) = 1.209864499, |H(H)| = −0.080256775 (<0)
solutions 3: (∆φ, λ) = (−1.948572843,−0.23837645), locking range (theory) = 1.2161630, locking range (GA) = 1.2162259, |H(H)| = 0.18880119 (>0)

(e) p = 10
solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.1965111, locking range (GA) = 1.1952760, |H(H)| = 0.02247527398 (>0)

(f) p = ∞

solutions 1: (∆φ, λ) = (−3.1415927, 0.0000000), locking range (theory) = 1.1784578, locking range (GA) = 1.1783933, |H(H)| = 0.012231488 (>0)
that this value of ∆φmax is consistent with the optimal solution of
∆φ ∼ −1.364 for p = 1.01 in Table 3. An overview of the resulting
optimal forcings is presented in Fig. 18.

7. Conclusions and discussion

First, we will summarize the previous sections, and then we
will consider some extensions and possible applications of our
results. One of the important results in this paper is the fact that
the optimization problem posed in Section 1 can be solved using
the equality condition of Hölder’s inequality, which results in, for
1:1 entrainment, (i) a construction of the global optimal forcing in
Lp(S) (Theorem 1 for 1 < p < ∞, and Theorem 2 for p = ∞), and
(ii) a construction of pulse-like forcings in L1(S) by which the ideal
locking range is asymptotically realized (Theorem3 for p = 1; note
that the uniqueness of such forcings is not proved here), and for
m:n entrainment, and (iii) a proof of the non-existence of the ideal
forcing and a characterization of an asymptotically ideal forcing for
m:1 entrainment in Lp(S) (Theorem 4). (iv) In addition to these, we
establish definite algorithms (Sections 6.1 and 6.2) for obtaining
the global optimal forcing for 1 < p ≤ ∞ and pulse-like forcings
for p = 1. The numerical results in Section 6 verify the perfect
match between the theory and independent, systematic numerical
simulations.

On the other hand, some parts of our results can also be
derived by using the Euler–Lagrange equation, and some useful
components are included in the present study (e.g., Eqs. (51) and
(68) in Section 9) for their derivations. It seems rather natural
that such direct connections should emerge between Hölder’s
inequality and the calculus of variation. In fact, such connections
are historically known [32]. However, it is still worth investigating
the application limits in our inequality approach to more general
optimization problems. Also, from a practical point of view, it
is important to clarify what sort of entrainment problems can
be solved with inequalities. Further work along this line will be
reported elsewhere.
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Fig. 7. R(∆φ) on Tp: (a) p = 1.01, (b) p = 1.1, (c) p = 2, (d) p = 5, (e) p = 10, and (f) p = ∞. In each graph, ◦ and × indicate the optimal and non-optimal solutions,
respectively.
As mentioned in Section 1, the results in this paper consti-
tute a useful design methodology for investigating entrainment
issues in biology and neurophysiology, as well as electrical en-
gineering; here, we briefly review some examples. (i) Zhai and
Kiss have observed in an electro-chemical experiment that all the
optimal forcings in our theory (p = 1, 2,∞) actually optimize
their locking ranges [33]. (ii) Sekiya, Nakada, and the author (H.T.)
designed an injection-locking circuitry including CMOS (comple-
mentary metal–oxide semiconductor) ring oscillators [7] in mi-
croelectronics and class-E oscillators in power electronics, and
verified that the theoretically obtained optimal forcing (p = 1, 2)
optimized their locking ranges through systematic circuit simula-
tions. In addition, (iii) Tsubo and H.T. have found our theoretical
results useful also for optimizing entrainability in noisy oscillators
in relation to neural activity, which will be reported elsewhere.

Finally, we point out some possible applications and extensions
of our theory that we believe are interesting and may possibly
be practically important. (i) Application to coupled oscillators
(or excitable elements): For instance, our theory is immediately
applicable if collective phase sensitivity [34–36] is obtained in
such systems, where the whole system is effectively regarded
as kind of a giant limit-cycle oscillator in high- (or infinite-)
dimensional phase space. It should be noted that [37,38] are
useful for obtaining such collective phase sensitivity in various
situations. (ii) Optimization of the entrainment stability: This
problemwas first solved by using the Euler–Lagrange equation for
the p = 2 case [17]. In contrast, if our theory is applied, then this
problem can be solved (as we observe in this paper) under more
general conditions simply by replacing Z̄(θ)with−Z ′(θ), similarly
to [17]. (iii) Optimization of synchronization to common noise:
[39,40] provide frameworks for optimizing the phase response
function Z(θ) of the oscillator under certain common noises,
in relation to [41]. Such frameworks for optimizing Z could be
generalized and analyzed with the aid of the results in this paper,
since optimization of the forcing f and that of Z are now equivalent
bypermuting Z and f if ⟨Zf ⟩ ismaximized. Also, needless to say, this
idea of optimizing Z (for a given f ) is now feasible for the noiseless
situation considered in this paper. (iv) Controlling traveling pulses
orwaves in reaction–diffusion systems: [42] derives the associated
phase sensitivity function, and the dynamics of traveling pulses



12 H.-A. Tanaka / Physica D 288 (2014) 1–22
0

f o
pt

, 1
.0

1(
 

)

0

0 0

-30

-20

-10

0

10

20

30

-25
-20
-15
-10
-5
0
5

10
15

-30

-20

-10

0

10

20

30

-40
-30
-20
-10

0
10
20
30

θ
f o

pt
, 1

.0
1(

 
)

θ

f o
pt

, 1
.0

1(
 

)
θ

f o
pt

, 1
.0

1(
 

)
θ

a b

c d

Fig. 8. Optimal forcing waveforms (p = 1.01): (a) (∆φ, λ) = (−π, 0), (b) (∆φ, λ) = (−2.6739647,−0.5640646), (c) (∆φ, λ) = (−1.9047696, 0.5266019), and
(d) (∆φ, λ) = (−1.2455892, 0.8126150). Here fopt(θ)theory and fopt(θ)GA respectively indicate the results from the theoretical prediction (26) and a direct GA search.
a b

Fig. 9. Optimal forcing waveforms (p = 1.1): (a) (∆φ, λ) = (−π, 0) and (b) (∆φ, λ) = (−1.2720412, 0.7924492).
a b

Fig. 10. Optimal forcing waveforms (p = 2): (a) (∆φ, λ) = (−π, 0) and (b) (∆φ, λ) = (−1.3864149, 0.0).
a b

Fig. 11. Optimal forcing waveforms (p = 5): (a) (∆φ, λ) = (−π, 0) and (b) (∆φ, λ) = (−1.4058325,−0.4169387).
reduces to the phase equation (2), which enables our optimization
methods to be applicable to such systems. We note that a variety
of forcing strategies and obtained phase sensitivity functions
in [43] are important for designing controls in such systems.
(v) Controlling intrinsic localized modes in oscillator arrays:
There has been steady progress in research on intrinsic localized
vibrational modes (ILMs), both experimentally and theoretically
[44–46]. Similarly to the above case of (iv), these ILMs could
possibly be regarded as limit cycles in high-dimensional phase
space, and in such a situation,we expect it is rather straightforward
to apply the results here for controlling such ILMs, as the dynamics
of periodically forced ILMs is effectively reduced to Eq. (2).
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a b

Fig. 12. Optimal forcing waveforms (p = 10): (a) (∆φ, λ) = (−π, 0) and (b) (∆φ, λ) = (−1.4225536,−0.5477614).
Fig. 13. Γ (φ) for solution 3 (p = 1.01).

Fig. 14. Solution curve S∞ of Eq. (69a) and solution curve T∞ of Eq. (69b) (p = ∞).

Another challenge still remains to us: to determine whether
ILMs in conservative systems (e.g., discrete breathers) can be re-
duced to a phase description such as Eq. (2). This idea seems
rather reasonable, since stable ILMs (elliptic breathers) in finite-
dimensional Hamiltonian systems are generically characterized as
periodic solutions in the center of KAM tori [47], and the dynam-
ics around such periodic solutions would be reduced to the phase
Fig. 16a. Theoretical prediction of R(∆φ). The ×, +, ◦, △, and � symbols here
correspond to the datasets shown in Fig. 17.

Fig. 16b. R(∆φ) obtained from numerical simulations perfectly match the
theoretical prediction. The width and amplitude of the pulses are fixed at 0.07 and
1.14 respectively.

coordinate, at least formally, although an isochrone cannot be
generally expected [K. Yoshimura (Personal communication)].
Thereby, the (formal) phase description of Eq. (2) combined with
the obtained theory here would provide a new framework for
a b

Fig. 15. Optimal forcing waveforms (p = ∞): (a) (∆φ, λ) = (−π, 0) and (b) (∆φ, λ) = (−1.4456283,−0.6738817). Here fopt(θ)theory and fopt(θ)GA respectively indicate
the results from the theoretical prediction Eq. (32) and a direct GA search.
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Fig. 17. Arnold tongues for five different impulsive forcings, which correspond to
the +, ◦, △, and � predictions in Fig. 16a. Here Ω and h are the forcing frequency
and the amplitude of pulses, respectively. The width of pulses is fixed at 0.07.

controlling discrete breathers, which gives a hint for understand-
ing emerging interesting experimental results such as [48].

8. Proofs of lemmas

8.1. Proof of Lemma 1

First, we verify that f∗, p in Eq. (13) gives the ideal solution;
the particular function given by Eq. (13) is a special case of
the functions given by (12) which satisfy the equality condition
of Hölder’s inequality in Eq. (9). In addition, the constraint (4),
∥f∗, p∥p = M , is satisfied, as we have already plugged ∥f ∥p = M
into Eq. (9).

Next, we verify that the ideal solution (13) is a uniquely ob-
tained, by showing the construction of (13) from Eq. (12), which
is as follows. f∗, p in Eq. (13) should satisfy ⟨f∗, p g⟩ = ⟨|f∗, p g|⟩
in Eq. (9). This requires f∗, p(θ)g(θ) ≥ 0 a.e. on S. On the other

hand, f∗, p(θ)g(θ) = Mσ(θ)g(θ)


|g(θ)|
∥g∥q

 1
p′ , from Eq. (12). Then,

σ(θ)g(θ) has to be a non-negative function, sinceM


|g(θ)|
∥g∥q

 1
p′

≥ 0
and f∗, p g is a non-negative function. Thus, σ(θ) = ±1 is uniquely
determined as σ(θ) = sgn[g(θ)], resulting in Eq. (13). �

8.2. Proof of Lemma 2

If we assume that the ideal solution (13) for m:n entrainment
exists, then this requires the equality condition r|f (nθ)|p = s
|g(mθ)|q to hold. But this condition is not satisfied in general,
except for the trivial case g(θ) ≡ constant, since f and g are peri-
odic functions with different periods. (Thus, it is now clear that the
only possibility for realizing (13) is in the case ofm = n, namely 1:1
entrainment.) In addition, no other ideal solutions can exist with-
out (13) for a given g , due to the uniqueness of the ideal solution
(13) as shown in Lemma 1. �

8.3. Proof of Lemma 3

[Case of p → ∞ (p′
→ ∞)] From the assumption (14), it is

obvious that 0 ≤ |g(θ)|/∥g∥q < ∞, and hence, as p′
→ ∞,

|g(θ)|
∥g∥q

 1
p′

→


1, for |g(θ)| > 0
0, for |g(θ)| = 0. (38)

Thus, taking the limit of (38) in Eq. (13), Eq. (15) is obtained.
Fig. 18. Overview of optimal forcings for various p ∈ [1,∞] obtained for the
Hodgkin–Huxley phase model with Eq. (37).

[Case of p → 1 (p′
→ +0)] The limiting value of (|g(θ)|/

∥g∥q)
1
p′ in Eq. (13) is obtained by the following calculations at

θ = θ∗ and at θ ≠ θ∗. First, rescaling |g(θ)|/∥g∥q with ḡ(θ) =

g(θ)/|g(θ∗)|, we have |ḡ(θ∗)|
1
p′ = 1 (for any p′), and for any θ we

have:
|g(θ)|
∥g∥q

 1
p′

=


|Cḡ(θ)|
∥Cḡ∥q

 1
p′

=
|ḡ(θ)|

1
p′

⟨|ḡ(θ)|1+
1
p′ ⟩

1
1+p′

=


|ḡ(θ)|
||ḡ||q

 1
p′
, (39)

where C denotes |g(θ∗)| (<∞). Since we have assumed θ∗ to
have 0 measure in Section 4.2, from |ḡ(θ)| < 1 and 1

1+p′ →

1 (p′
→ +0), we have |ḡ(θ)|1+

1
p′ → +0 a.e. on S, resulting in

⟨|ḡ(θ)|1+
1
p′ ⟩

1
1+p′ → +0 (p′

→ +0). Thus, for θ = θ∗ we obtain
|g(θ∗)|
∥g∥q

 1
p′

→ +∞ (p′
→ +0) from Eq. (39).

In contrast, for θ ≠ θ∗, we have ∥ḡ∥q → ∥ḡ∥∞ = 1 (q →

+∞),2 and ḡ(θ) < 1. This implies |ḡ(θ)|
∥ḡ∥q

→ |ḡ(θ)| < 1 (q →

+∞). Then, by taking the logarithm of Eq. (39), log


|ḡ(θ)|
∥ḡ∥q

 1
p′


= (q−1) log( |ḡ(θ)|

∥ḡ∥q
) → −∞ (q → +∞), and hence


|g(θ)|

∥ḡ(θ)∥q

 1
p′

→

+0 (p′
→ +0). Thus, from these calculations, we obtain the limit

of (16). �

8.4. Proof of Lemma 4

First, ∥fg∥1 is maximized by f∗, ∞, since

∥f∗, ∞ g∥1 = ⟨Msgn[g(θ)] g(θ)⟩ = M ⟨|g(θ)|⟩ = M∥g∥1. (40)

Second, the unique representation of this ideal solution f∗, ∞

is shown by proof by contradiction, as follows. Suppose another
ideal solution f̄∗, ∞ exists and it maximizes ∥fg∥1, i.e., ∥f̄∗, ∞ g∥1 =

M∥g∥1. Then, for any given g ∈ L1(S), the following is satisfied:

∥f∗, ∞ g∥1 − ∥f̄∗, ∞ g∥1 = 0. (41)

2 To be more precise, here we have assumed ||ḡ||r < ∞ for some r < ∞. This
assumption is quite natural in our context, as we can set r = 2, for instance, and
then ||ḡ||q → ||ḡ||∞ (q → ∞) follows. See [29] on p. 71 for an outline of the proof.
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Now, using the identities f∗, ∞(θ)g(θ) = Msgn[g(θ)] · g(θ) ≥

0 and |g(θ)| = f∗, ∞(θ)g(θ)/M , we obtain |f∗, ∞(θ)g(θ)| −

|f̄∗, ∞(θ)g(θ)| = f∗, ∞(θ)g(θ) − |f̄∗, ∞(θ)||g(θ)| and f∗, ∞(θ)g(θ)
− |f̄∗, ∞(θ)||g(θ)| = f∗, ∞(θ)g(θ) −

|f̄∗, ∞(θ)|

M f∗, ∞(θ)g(θ), res-
pectively, resulting in the equality
|f∗, ∞(θ)g(θ)| − |f̄∗, ∞(θ)g(θ)|

= f∗, ∞(θ)g(θ)−
|f̄∗, ∞(θ)|

M
f∗, ∞(θ)g(θ). (42)

Plugging Eq. (42) into the lhs of Eq. (41) and using |g(θ)| =

f∗, ∞(θ)g(θ)/M , Eq. (41) is rewritten as
1 −

|f̄∗, ∞(θ)|

M


f∗, ∞(θ) g(θ)


= ⟨(M − |f̄∗, ∞(θ)|)|g(θ)|⟩ = 0. (43)

Now, keeping |f̄∗, ∞(θ)| ≤ M and the assumption that g(θ) ≠

0, a.e. on S in mind, Eq. (43) implies

|f̄∗, ∞(θ)| = M, or equivalently

f̄∗, ∞(θ) = Mσ(θ), a.e. on S.
(44)

However, among such functions f̄∗, ∞ having either M or −M val-
ues, it is clear that Msgn[g(θ)] (=f∗, ∞) only makes ⟨fg⟩ maximal.
Thus, no f̄∗, ∞ can exist except for f∗, ∞, and thus the uniqueness of
the ideal solution f∗, ∞ is verified.

Finally, similarly to the argument in Lemma 2, this unique, ideal
solution (18) is realized only for 1:1 entrainment, since f∗, ∞ and g
in Eq. (18) must have the same period. �

8.5. Proof of Lemma 5

In Eqs. (21) and (22), ∆ ∈ L1(S) and f∗, 1 ∈ L1(S), respectively,
and this f∗, 1 satisfies ∥f∗, 1∥1 = M . Now, ⟨f∗, 1 g⟩ → M∥g∥∞

(ϵ → +0) since ⟨f∗, 1 g⟩ = M⟨
n

i=1 sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)⟩ →

M|g(θ̄i)| = M∥g∥∞. The proof of this limit is given in Appendix E
as (a). �

9. Proofs of theorems

9.1. Proof of Theorem 1

Here, we outline the proof. The assumption in Lemma 1
(i.e., f ∈ Lp(S), g ∈ Lq(S)) is satisfied by the constraint ∥f ∥p = M
and assumption (i) in Theorem 1. Another assumption (i.e., ∥g∥q
is not affected by f ) is satisfied since ∆φ and λ are undetermined
free parameters at this stage. Then, using Lemma 1, we start from
the ideal solution (13) with Eq. (24) which reduces down to the
finite dimensional optimization problem of H with two variables
∆φ and λ in Eq. (31). This optimization of H is possible, owing to
the following facts. First, from assumption (iii) in Theorem 1,H has
only isolated optimal points. Second, from assumptions (i), (ii), and
(iv), the derivatives ∂2H

∂∆φ2
, ∂2H
∂∆φ∂λ

, ∂2H
∂λ∂∆φ

, and ∂2H
∂λ2

are continuous
in the neighborhood of the optimal points; this is directly verified
by the (ϵ, δ)-definition of limit (See Appendix F for more details.),
using the following (a) and (b): (a) all required derivatives of
H are explicitly given as in Eq. (51), and (b) some integrals in
Eq. (51) become singular, but all of them have finite values, and
the contribution from singular points are on the order of ϵβ (as
estimated in Appendix D).

Then, as the next step, we obtain the necessary and sufficient
conditions for the existence of the optimal solutions of H in
Section 9.1.1. Finally, using these conditions, we characterize the
optimal forcings, andweverify that the global optimal forcing fopt, p
indeedmaximizes the locking range in the original Eqs. (2) and (3),
in Section 9.1.2.
9.1.1. Necessary and sufficient conditions of optimal solutions
(∆φ∗, λ∗)

Note that

∂G
∂∆φ

, ∂G
∂λ


≠ 0 is always satisfied, since ∂G

∂λ
> 0 as

obtained below in Eq. (49). Then, the Lagrange multiplier rule is
applied, which implies that some value of theµ (which can be 0) in
Eq. (31) satisfying the associated optimization problem exists and
that the associated optimal solution (∆φ∗, λ∗) to Eq. (31) satisfies
∂H
∂∆φ

,
∂H
∂λ


= 0, (45)

if it exists. Namely, candidates of the optimal solution to the
optimization of (31) are obtained by solving Eq. (45) with the
associated constraint G(∆φ, λ) = 0 for ∆φ∗, λ∗, and µ∗; the
derivation process is as follows.

We start from abbreviating p′
+1
p′ and 1

p′ , respectively, as
p′

+1
p′ ≡

α > 0 and 1
p′ ≡ β > 0, as in Eq. (25). Then, the derivatives of

F(∆φ, λ) in Eq. (28) are obtained as

∂F
∂∆φ

= α

sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|βZ ′(θ +∆φ)


≡ F1(∆φ, λ) (46)

∂F
∂λ

= α

sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β


= αG ≡ F2(∆φ, λ). (47)

Likewise, the derivatives of G(∆φ, λ) in Eq. (30) are obtained as

∂G
∂∆φ

= β

|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)


, (48)

∂G
∂λ

= β

|Z̄(θ)+ λ|β−1 > 0. (49)

For the derivation of Eqs. (46)–(49), see Appendix B. Note that in
Eq. (47) F2(∆φ, λ) = α


sgn(Z̄(θ)+ λ)|Z̄ + λ|β


= 0 is simply

the constraint G(∆φ, λ) = 0. Since in Eq. (45) we have ∂H
∂λ

=

∂F
∂λ

+ µ ∂G
∂λ

= 0, and ∂F
∂λ

= αG(∆φ, λ) = 0 and ∂G
∂λ
> 0 follow from

the above arguments, µ∗ is uniquely determined as µ∗ = 0. (This
sounds a bit contradictory, as the µG term vanishes in Eq. (31) if
µ = µ∗ = 0; however, forµ∗ = 0, Eq. (45) reduces to F1(∆φ, λ) =

F2(∆φ, λ) = 0, and the solutions to this automatically satisfy the
constraint (5). Hence, the situation here does not contradict the
result from the Lagrange multiplier rule.) Thus, the candidates for
optimal solutions are obtained from F1 = F2 = 0.3

Now we are in position to distinguish optimal solutions from
non-optimal ones. For this purpose, the so-called borderedHessian
matrix of H [31] is introduced as

H(H) =

 0 H12 H13
H21 H22 H23
H31 H32 H33


, (50)

whose elements are given by

H12 = H21 =
∂G
∂∆φ

= β

|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)


, (51a)

H13 = H31 =
∂G
∂λ

= β

|Z̄(θ)+ λ|β−1 > 0, (51b)

3 In this particular problem, if we utilize the convenient property that ∂F
∂λ

= 0 is
equivalent to the constraint G = 0, then the problem reduces to the optimization
of F . However, in more general situations beyond our particular problem, this
convenient property does not necessarily hold. Therefore, here we optimize H
instead of F to keep the method general.
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H22 =
∂2F
∂∆φ2

= αβ
Z̄(θ)+ λ

β−1
Z ′(θ +∆φ)2


+α


sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|βZ ′′(θ +∆φ)


, (51c)

H23 =
∂2F

∂∆φ∂λ
= αβ


|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)


= αH12, (51d)

H32 =
∂2F

∂λ∂∆φ

= α
∂

∂∆φ


sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β


= αβ


|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)


= αH12, (51e)

H33 =
∂2F
∂λ2

= α
∂

∂λ


sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β


= αβ


|Z̄(θ)+ λ|β−1

= αH13 > 0. (51f)

See Appendix B, for the outline of these derivations.
The Hessian |H(H)| is then obtained as

|H(H)| = H13(αH12
2
− H13H22), (52)

which turns out to be particularly useful because the solution
(∆φ∗, λ∗) to F1(∆φ, λ) = F2(∆φ, λ) = 0 becomes maximal if it
satisfies |H(H)| > 0, and it becomes minimal if |H(H)| < 0 [31].
Hence, from the above calculations, the optimal solution (∆φ, λ) to
Eq. (28) under the charge-balance constraint (29) is found to exist,
if the following conditions are satisfied:
sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|βZ ′(θ +∆φ)


= 0 (=α−1F1), (53)

sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|β

= 0 (=α−1F2), (54)

|H(H)| = H13(αH2
12 − H13H22) > 0. (55)

We note here, for this optimal solution, that the inequality
sgn[Z̄(θ)+ λ]|Z̄(θ)+ λ|βZ ′′(θ +∆φ)


< 0 (56)

is automatically satisfied, which will be key for characterizing the
optimality of Γ (φ) later, in Section 9.1.2. For the derivation of Eq.
(56), see Appendix C.

Finally, we note that all the integrals involving |Z̄(θ) + λ|β−1

in Eq. (51) can be singular when 2 < p < ∞, i.e., 0 < β =
1
p′ =

1
p−1 < 1, because Z̄(θ) + λ may possibly have zeros θ∗ and

|Z̄(θ) + λ|β−1 becomes infinite at θ = θ∗. However, all such inte-
grals have finite values if Z̄(θ) is twice differentiable and Z̄ ′(θ∗) ≠

0 for every θ∗, for instance. For the proof, see Appendix D.

9.1.2. Symmetry of solutions (∆φ, λ) and verification of maximal
locking range R[f ]

Here we focus on the symmetry of the solutions (∆φ, λ) to Eqs.
(53)–(55), as follows. First, we note that there is a symmetry both
in F and G: F(∆φ, λ) = F(−∆φ,−λ) in Eq. (28) and G(∆φ, λ) =

G(−∆φ,−λ) in Eq. (30) for any ∆φ and λ. Then, if (∆φ∗, λ∗) is a
solution to Eqs. (53) and (54), (−∆φ∗,−λ∗) is also a solution to Eqs.
(53) and (54). For this pair of solutions (∆φ, λ) = (±∆φ∗,±λ∗),
g(θ) and fopt, p(θ) are respectively given by

g(θ) = ±[Z̄(θ)+ λ∗], (57a)

fopt, p(θ) = ±Msgn

Z̄(θ)+ λ∗

 
|Z̄(θ)+ λ∗|

∥Z̄(θ)+ λ∗∥q

β
, (57b)

where Z̄(θ) = Z(θ + ∆φ∗) − Z(θ). Thus, ⟨fopt, p g⟩ has the same
value for both solutions.

The reason for this coincidence is now understood as follows.
The pair of forcings in Eq. (57b) corresponding to the ± signs
have a mutually inverted relationship across the θ axis in their
graphs, and hence the associated Γ ’s have the same symme-
try, since Γ (φ) =

1
2π ⟨Z(θ + φ)fopt, p(θ)⟩. Therefore, the lock-

ing range 1
2π ⟨fopt, p g⟩ ∼ F(∆φ, λ), i.e., the maximum of Γ (φ)

– the minimum of Γ (φ), are the same for both forcings in (57b).
Therefore, since we have assumed this F(∆φ, λ) to be maxi-
mized at (∆φ, λ) = (∆φ∗, λ∗), it is simultaneously maximized at
(∆φ, λ) = (−∆φ∗,−λ∗), due to the symmetry of F(−∆φ,−λ) =

F(∆φ, λ). Thus, |H(H(−∆φ∗,−λ∗))| > 0 (or ≤0) has to be sat-
isfied if |H(H(∆φ∗, λ∗))| > 0 (or ≤0).

Finally, we will verify the original definition of Γ as shown in
Fig. 1 as follows: the global optimal forcing fopt, p indeedmaximizes
Γ at φ+ and minimizes Γ at φ−, respectively. Here, we note that
Γ (φ) is twice differentiable, from assumption (i) in Theorem 1 and
the fact that fopt, p in (57b) is continuous. Also, the following has to
be satisfied, as shown in Fig. 1 in Section 2:

Γ ′(φ±) = 0, Γ ′′(φ+) < 0, and Γ ′′(φ−) > 0. (58)

First, from Eqs. (3) and (57b), Γ is now

Γ (φ) =
1
2π


Z(θ + φ)fopt,p(θ)


= C⟨Z(θ + φ) sgn


Z̄(θ)+ λ

 Z̄(θ)+ λ
β⟩, (59)

where C =
M
2π ∥Z̄(θ) + λ∥

−β
q > 0. Furthermore, Γ ′(φ)


=

dΓ (φ)
dφ


and Γ ′′(φ)


=

d2Γ (φ)
dφ2


are respectively Γ ′(φ) = C


Z ′(θ + φ) sgn

[Z̄(θ)+ λ]
Z̄(θ)+ λ

β and Γ ′′(φ) = C

Z ′′(θ + φ) sgn[Z̄(θ)+

λ]
Z̄(θ)+ λ

β, since Z̄(θ) = Z(θ + φ+) − Z(θ + φ−) does not

depend on φ. Thus, for (∆φ, λ) = (∆φ∗, λ∗), Γ
′(φ+) and Γ ′′(φ+)

respectively should satisfy

Γ ′(φ+) = C⟨Z ′(θ + φ+) sgn[Z̄(θ)+ λ∗]
Z̄(θ)+ λ∗

β⟩
= C⟨sgn[Z(θ +∆φ∗)− Z(θ)+ λ∗] |Z(θ +∆φ∗)

− Z(θ)+ λ∗|
β Z ′(θ +∆φ∗)⟩ = 0, (60a)

Γ ′′(φ+) = C⟨Z ′′(θ + φ+) sgn[Z̄(θ)+ λ∗]
Z̄(θ)+ λ∗

β⟩
= C⟨sgn[Z(θ +∆φ∗)− Z(θ)+ λ∗] |Z(θ +∆φ∗)

− Z(θ)+ λ∗|
β Z ′′(θ +∆φ∗)⟩ < 0. (60b)

Second, these conditions (60a) and (60b) are automatically sat-
isfied, as we have already obtained them in Eqs. (53) and (56)
for (∆φ, λ) = (∆φ∗, λ∗). The same holds true for Γ ′(φ−) and
Γ ′′(φ−); that is, for (∆φ, λ) = (∆φ∗, λ∗), Γ ′(φ−) and Γ ′′(φ−) in
Eq. (58) should satisfy

Γ ′(φ−) = C

Z ′(θ + φ−) sgn[Z̄(θ)+ λ∗]

Z̄(θ)+ λ∗

β
= C ⟨sgn[Z(θ +∆φ∗)− Z(θ)+ λ∗] |Z(θ +∆φ∗)

− Z(θ)+ λ∗|
β Z ′(θ)


= 0, (61a)

Γ ′′(φ−) = C

Z ′′(θ + φ−) sgn[Z̄(θ)+ λ∗]

Z̄(θ)+ λ∗

β
= C ⟨sgn[Z(θ +∆φ∗)− Z(θ)+ λ∗] |Z(θ +∆φ∗)

− Z(θ)+ λ∗|
β Z ′′(θ)


> 0, (61b)

where Eqs. (61a) and (61b) are simply Eqs. (53) and (56) for
(∆φ, λ) = (−∆φ∗,−λ∗), respectively, which are obtained by re-
placing θ −∆φ∗ with θ in Eqs. (53) and (56).

Hence, from the relationships between Eqs. (53), (56), and
(58), it is concluded that for any (∆φ∗, λ∗) satisfying Eqs. (53)–
(55), fopt, p in Eq. (26) is indeed global possible optimal forcing,
whose locking range 1

2π ⟨fopt, p g⟩ is given as M
2π ⟨(Z̄ + λ)α⟩

1
α =

M
2π F(∆φ∗, λ∗)

1
α . As M and α are given constants here, the global

optimal forcing is realized at (∆φ∗, λ∗) = (∆φ∗, λ∗), for which
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F(∆φ∗, λ∗)becomes the largest among all F(∆φ∗, λ∗)’s. (end of the
proof of Theorem 1) �

Here,wenote that the above argument for 1 < p < ∞ becomes
much simpler for the specific case of p = 2, as follows. In this case,
Eqs. (53) and (54) respectively become

⟨[Z(θ +∆φ)− Z(θ)+ λ]Z ′(θ +∆φ)⟩ = 0, (62)
⟨Z(θ +∆φ)− Z(θ)+ λ⟩ = 0. (63)

Since ⟨Z(θ + ∆φ) − Z(θ)⟩ = ⟨Z(θ + ∆φ)⟩ − ⟨Z(θ)⟩ = 0,
Eq. (63) gives λ = 0, and Eq. (62) becomes ⟨[Z(θ + ∆φ) −

Z(θ)]Z ′(θ +∆φ)⟩ =
1
2


Z(θ +∆φ)2

2π
0 − ⟨Z(θ)Z ′(θ +∆φ)⟩ = 0,

i.e., ⟨Z(θ)Z ′(θ+∆φ)⟩ = 0,which is a condition determining∆φ, as
appeared in [25] via variational calculus. Also, in this case Eq. (56)
becomes ⟨[Z(θ +∆φ)− Z(θ)]Z ′′(θ +∆φ)⟩ < 0, which is obtained
by the Cauchy–Schwarz inequality in [25].

9.2. Outline of proof of Theorem 2

As the proof is quite similar to that of Theorem 1, we start by
listing the differences. First, the singular integrals appearing in
Eq. (51) do not appear in this case, p = ∞ (as shown in (68)).
Thus, assumption (i) is a bit relaxed. Second, as we see in Eq.
(68), a somewhat ‘discrete’ nature appears in the elements of the
bordered Hessian matrix for H∞: some elements are determined
by only the local information of Z ′ and Z̄ ′ at zeros of Z̄ + λ. This in
turn results in the quite simple formula (70) for optimality, via the
finite-dimensional Cauchy–Schwarz inequality (73).

The proof and required calculations are outlined as follows.
From Eq. (68b), ( ∂G∞

∂∆φ
, ∂G∞

∂λ
) ≠ 0. From Eq. (68), the continuity

of the derivatives of H∞ is verified, similarly to in Section 9.1.
Hence, the Lagrange multiplier rule implies that there exists µ∗,

and

∂H∞

∂∆φ
, ∂H∞

∂λ


= 0 is satisfied at the optimal solution (∆φ∗, λ∗),

as mentioned in assumption (iii). Now, µ∗ and (∆φ∗, λ∗) are
determined, following the same procedure as in the case of 1 <
p < ∞ in Section 9.1.1. For this purpose, we require twice-
differentiable Z(θ) and g(θ) as in assumptions (i) and (ii), which
results in

∂F∞

∂∆φ
= ⟨sgn[Z̄(θ)+ λ]Z ′(θ +∆φ)⟩, (64)

∂F∞

∂λ
= ⟨sgn[Z̄(θ)+ λ]⟩ = G∞(∆φ, λ), (65)

∂G∞

∂∆φ
= 2

n
i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|
, (66)

∂G∞

∂λ
= 2

n
i=1

1
|Z̄ ′(θi)|

> 0, (67)

where θi represents the ith root of Z̄(θ) + λ = 0 (i.e., θ∗ in
Theorem2), and n is the number of the roots (an even number since
Z̄(θ) is periodic and Z̄ ′(θi) ≠ 0). The derivation of Eqs. (64)–(67)
is given in Appendix B. Similarly to the case of 1 < p < ∞ in
Section 9.1.1, µ = µ∗ is uniquely determined as µ∗ = 0, since
∂H∞

∂λ
=

∂F∞
∂λ

+ µ∗
∂G∞

∂λ
, and ∂F∞

∂λ
= 0 and ∂G∞

∂λ
> 0. In addition,

∆φ∗ and λ∗ are determined by ⟨sgn[Z̄(θ) + λ]Z ′(θ + ∆φ)⟩ = 0
and ⟨sgn[Z̄(θ)+λ]⟩ = 0. Now, the bordered Hessian matrix of H∞

is given by

H12 = H21 =
∂G∞

∂∆φ
= 2

n
i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|
, (68a)

H13 = H31 =
∂G∞

∂λ
= 2

n
i=1

1
|Z̄ ′(θi)|

> 0, (68b)
H22 =
∂2F∞

∂∆φ2
= 2

n
i=1

Z ′(θi +∆φ)2

|Z̄ ′(θi)|

+ ⟨sgn[Z̄(θ)+ λ]Z ′′(θ +∆φ)⟩, (68c)

H23 =
∂2F∞

∂∆φ∂λ
= 2

n
i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|
= H12, (68d)

H32 =
∂2F∞

∂λ∂∆φ
= 2

n
i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|
= H12, (68e)

H33 =
∂2F∞

∂λ2
= 2

n
i=1

1
|Z̄ ′(θi)|

= H13 > 0. (68f)

See Appendix B for the outline of these derivations. Hence, the
optimal solution (∆φ, λ) to Eq. (34) is obtained if and only if it
satisfies the following conditions:

⟨sgn[Z̄(θ)+ λ]Z ′(θ +∆φ)⟩ = 0, (69a)

⟨sgn[Z̄(θ)+ λ]⟩ = 0, (69b)

|H(H)| = H13(H
2
12 − H13H22) > 0. (69c)

Now, as with Eq. (56) for the case of 1 < p < ∞, the inequality for
p = ∞

⟨sgn[Z̄(θ)+ λ]Z ′′(θ +∆φ)⟩ < 0, (70)

is derived from Eq. (69c) as follows. First, we have H13 > 0 in Eq.
(68b), and this implies H2

12 − H13H22 > 0 from Eq. (69c). Then,
we obtain

H2
12 =


2

n
i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|

2
, (71)

and

H13H22 =


2

n
i=1

1
|Z̄ ′(θi)|


2

n
i=1

Z ′(θi +∆φ)2

|Z̄ ′(θi)|

+

sgn[Z̄(θ)+ λ]Z ′′(θ +∆φ)


, (72)

respectively, from Eqs. (68a), (68b), and (68c). Using the Cauchy–
Schwarz inequality, we have n

i=1

Z ′(θi +∆φ)

|Z̄ ′(θi)|

2
−

 n
i=1

1
|Z̄ ′(θi)|

 n
i=1

Z ′(θi +∆φ)2

|Z̄ ′(θi)|


= (X · Y )2 − |X |

2
|Y |

2
≤ 0, (73)

where X =


1/


|Z̄ ′(θ1)|, . . . , 1/


|Z̄ ′(θn)|


, Y =


Z ′(θ1 + ∆φ)/

|Z̄ ′(θ1)|, . . . , Z ′(θn +∆φ)/


|Z̄ ′(θn)|

.

Now, subtracting Eq. (72) from Eq. (71), we find this Eq. (73) is
included in H2

12 −H13H22, and hence

sgn(Z̄(θ)+ λ)Z ′′(θ +∆φ)


< 0 is obtained from H2

12 − H13H22 > 0.
Finally, to conclude the proof, it is sufficient to verify the

symmetry of F∞ and G∞, and (F∞(∆φ, λ) = F∞(−∆φ,−λ) and
G∞(∆φ, λ) = G∞(−∆φ,−λ)), and to verify that the optimal
forcing fopt, ∞ in Eq. (32) indeedmaximizesΓ at φ+ andminimizes
Γ at φ−, similarly to the case of 1 < p < ∞ in Section 9.1.2. Since
these are carried out by following the same procedure as followed
there, we omit the details here.

Thus, we are led to the same conclusion as in Section 9.1.2:
fopt, ∞ in Eq. (32) is the global optimal forcing, whose locking range
becomes the largest for the best solution (∆φ∗, λ∗) of Eqs. (76),
(77), as stated in Theorem 2. (end of the proof of Theorem 2) �
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9.3. Proof of Theorem 3

Here, we assume that Z̄(θ) = Z(θ+∆φ)−Z(θ) has amaximum
andminimum at θ = θmax and θ = θmin, respectively (assumption
(ii)), and further, without loss of generality, we assume that the
value of (the maximum − the minimum) = Z̄(θmax) − Z̄(θmin)
becomes the largest at some unique value of ∆φ = ∆φmax
(assumption (iii)). In the first part of this proof, we construct a
specific form of f∗, 1 in Eq. (75) from Eq. (21) in Lemma 5. Then, in
the remainder of the proof, we verify how this f∗, 1 asymptotically
realizes the ideal locking range obtained in Lemma 5.

First, notice that the assumptions in Lemma5 are satisfied in the
context of Theorem 3. Then, we start from the general form of f∗, 1
as given by Eq. (21) and herewe further impose the charge-balance
constraint of (5) on f∗, 1. Intuitively, this constraint is satisfied if f∗, 1
is a pair of one positive pulse and one negative pulse. In fact, this is
realized for a particular choice of λ,

λ = −
1
2
[Z̄(θmax)+ Z̄(θmin)], (74)

which is such that a maximum and minimum of g(θ) (=Z̄(θ)+ λ)
are located at θ = θmax and θ = θmin, respectively, for which
|g(θmin)| = |g(θmax)| with g(θmax) = −g(θmin) =

1
2 [Z̄(θmax) −

Z̄(θmin)] > 0 is satisfied in the context of Lemma 5. Thus, from Eq.
(21), we obtain the precise form of f∗, 1 as follows:

f∗, 1(θ) = M[∆(θ − θmax)−∆(θ − θmin)], (75)

which satisfies the charge-balance constraint.
On the other hand, from Eqs. (21) and (24) we obtain

Γ (φ) =
1
2π

⟨Z(θ + φ)f∗, 1(θ)⟩

=
1
2π

⟨Z(θ + φ)M
n

i=1

sgn[Z̄(θ)+ λ]∆(θ − θ̄i)⟩

→
M
2nπ

n
i=1

sgn[Z̄(θ̄i)+ λ]Z(θ̄i + φ), (uniformly on S) (76)

as ϵ → 0, where the uniform convergence in Eq. (76) is obtained,
for instance, if Z(θ+φ) is locally Lipschitz continuous (assumption
(i)), as proved in Appendix E as (b). Then, similarly to Eq. (76), from
f∗, 1 in Eq. (75) we obtain

Γ (φ) →
M
4π

[Z(θmax + φ)− Z(θmin + φ)]

≡ Γ0(φ) (uniformly, ϵ → 0). (77)

First, we notice that Γ0(φ) in Eq. (77) has virtually the same form
as Z̄(θ) = Z(θ +∆φ)− Z(θ). Namely, Γ0 becomes

Γ0(φ̄) =
M
4π

[Z(φ̄ + θmax − θmin)− Z(φ̄)] (78)

by setting φ̄ = φ+ θmin, and here we can denote this Z(φ̄+ θmax −

θmin)− Z(φ̄) term as Z̄(φ̄). Next, from the definition of Z̄ (assump-
tions (ii) and (iii)), Γ0(φ̄)(=

M
4π Z̄(φ̄)) achieves the maximum and

minimum at some φ̄ = φ+ and φ̄ = φ−, respectively, and the re-
sulting locking range is given by

Γ0(φ+)− Γ0(φ−) =
M
4π

[Z(φ+ + θmax − θmin)− Z(φ+)

− {Z(φ− + θmax − θmin)− Z(φ−)}]. (79)

Since this locking range is assumed to be the best one realized
by the best candidate (75), from Eq. (79) θmax − θmin should sat-
isfy θmax − θmin = ∆φmax. This is because, by assumption (iii),
θmax − θmin in Eq. (79) is uniquely determined as ∆φmax so that
Γ0(φ+)− Γ (φ−) is maximized. Thus, using θmax − θmin = ∆φmax,
we obtain Eq. (35) in Theorem 3 from Eq. (75).

So far, we have assumed the existence of the best choice of
∆φ = ∆φmax and the corresponding θmax and θmin. This results in
a candidate for the optimal forcing (35). Now we are in position
to verify that this forcing (35) realizes the ideal locking range
(= M

2π ∥g∥∞) as ϵ → +0, as follows. First, for Eq. (35), which is
equivalent to Eq. (75) with θmax − θmin = ∆φmax, we obtain the
following, from Eq. (79) by setting φ− ≡ θ and φ+ − φ− ≡ Φ:

Γ0(φ+)− Γ0(φ−) = Γ0(φ− + Φ)− Γ0(φ−)

=
M
4π

[Z(θ +∆φmax + Φ)− Z(θ + Φ)

− {Z(θ +∆φmax)− Z(θ)}]. (80)

Here, we use a simple property: any periodic continuous function
of the form p(θ + Φ) − p(θ) is maximized at some θ if and only
if Φ = Θmax − Θmin, where a periodic continuous function p(θ)
achieves themaximumand theminimum respectively atΘmax and
Θmin. From this property, Γ0(φ+)− Γ0(φ−) is maximized at some
θ (=φ−) if we setΦ = θmax−θmin, since the above p(θ) is regarded
as Z(θ + ∆φmax)− Z(θ). This implies that for Eq. (35) the locking
range Γ0(φ+)− Γ0(φ−) is really maximized for certain φ+ and φ−

satisfying φ+ − φ− = θmax − θmin = ∆φmax. Furthermore, this
φ+ − φ− = θmax − θmin is consistent with the assumption that
Z(θ + ∆φmax) − Z(θ) is maximized and minimized at θ = θmax
and θ = θmin, respectively.

Finally, Γ0(φ+) − Γ0(φ−) =
M
2π ∥g∥∞ is obtained as follows.

First, by the definition of g(θ) and by θmax − θmin = ∆φmax,
[Z(θ + ∆φmax + θmax − θmin) − Z(θ + θmax − θmin) − {Z(θ +

∆φmax)− Z(θ)}] = g(θ +∆φmax)− g(θ). Thus, Γ0(φ+)− Γ0(φ−)
corresponds to the maximum of g(θ + ∆φmax) − g(θ), from Eq.
(80). Furthermore, thismaximumof g(θ+∆φmax)−g(θ) becomes
2g(θmax) = 2∥g∥∞ since g(θmax) = −g(θmin) > 0. Plugging this
into Eq. (80), we obtain M

2π ∥g∥∞ as the ideal locking range realized
with f∗, 1. �
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Appendix A. Non-existence of fideal, 1

Here we prove the non-existence of fideal, 1 mentioned in
Section 4.4. We make the following assumptions about fideal, 1 and
g .

A1 fideal, 1 and g are measurable functions. fideal, 1 having non-
zero values on an interval I = [a, b] ⊂ S. g(θ) has a maximum at
θ = θ∗, at which it is continuous, i.e., |g(θ∗)| = ∥g∥∞. Without loss
of generality, we here set θ∗ = 0 and assume a < 0 < b. Also, for
simplicity, we assume that this θ∗ is unique and isolated.4

A2 fideal, 1(θ) satisfies Eq. (20), namely

⟨fideal, 1(θ) g(θ)⟩ = ∥fideal, 1 g∥1 = ∥fideal, 1∥1 ∥g∥∞

= M∥g∥∞. (A.1)

4 Even if g(θ) has multiple, isolated maxima θ∗, i , the argument here can be
repeated to construct subinterval In instead of I2 , and this would lead to the same
kind of contradiction as shown for the assumed case.
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Fig. A.1. Non-existence of fideal, 1 .

Due to the continuity of the integral
 θ
a fideal, 1(θ) g(θ) dθ with

respect to θ , there exists θm ∈ I such that the following holds: θm

a
fideal, 1(θ) g(θ) dθ =

 b

θm

fideal, 1(θ) g(θ) dθ =
M
2

∥g∥∞. (A.2)

Then, focusing on this θm, we consider the following two cases,
separately, as follows.

C1 Case of
 θm
a |fideal, 1(θ)|dθ ≠

 b
θm

|fideal, 1(θ)|dθ

Having ∥fideal, 1∥1 =
 b
a |fideal, 1(θ)|dθ = M in mind, we as-

sume
 b
θm

|fideal, 1(θ)|dθ < M
2 without loss of generality. Then

we have
 b
θm

2fideal, 1(θ) g(θ) dθ = M∥g∥∞ from Eq. (A.2) and b
θm

|2fideal, 1(θ)|dθ < M from the above assumption. This implies
the existence of a better forcing f∗(θ) defined as

f∗(θ) =


2Cfideal, 1(θ) θ ∈ [θm, b]
0 otherwise, (A.3)

where C(>1) satisfies
 b
θm

C |2fideal, 1(θ)|dθ = M . And, it satisfies
∥f∗∥1 = M and ∥f∗ g∥1 > M∥g∥∞. However, this contradicts
Hölder’s inequality (20).

C2 Case of
 θm
a |fideal, 1(θ)|dθ =

 b
θm

|fideal, 1(θ)|dθ
In this case, we pick the interval [a, θm] (or [θm, b]) as shown in

Fig. A.1 and divide it into [a, θn] and [θn, θm] in such a way that θn

a
fideal, 1(θ) g(θ) dθ =

 θm

θn

fideal, 1(θ) g(θ) dθ

=
M
22

∥g∥∞, (A.4)

and if
 θn
a |fideal, 1(θ)|dθ < M

22
holds, the same argument as that

for C1 is repeated. Otherwise, if
 θn
a |fideal, 1(θ)|dθ =

M
22

holds,
this implies the existence of a subinterval I2 ⊂ I which does not
contain θ = θ∗. As shown in Fig. A.1, we define this I2 as [a, θn]
without loss of generality, and this existence implies the existence
of f∗(θ) having non-zero values on I2 that satisfies ∥f∗∥1 = M and
⟨|f∗(θ) g(θ)|⟩ = M∥g∥∞. However, since the essential supremum
of |g(θ)| on I2 (i.e., ∥g∥∞,I2 ) is less than that on S (i.e., ∥g∥∞),
it follows that we have ⟨f∗(θ)g(θ)⟩ ≤


I2

|f∗(θ)|dθ · ∥g∥∞,I2 <

M∥g∥∞. This contradicts ⟨|f∗(θ)g(θ)|⟩ = M∥g∥∞. �

Appendix B. Derivation of Eqs. (46)–(49), (51c), (51d), (64)–(67),
and (68c), (68d)

Here, the derivation of Eqs. (46)–(49), (51c), (51d), (64)–(67),
and (68c), (68d) is outlined. For those who are familiar with the
delta function, these equations can be formally derived with much
less effort, for instance, by using the formula δ[f (x)] =


i
δ(x−xi)
|f ′(xi)|

,
where xi are the roots of f (x) = 0. However, without using such a
Fig. B.1. Case of the differentiation with respect to λ (for Eq. (67)).

technique, all equations can be obtained by elementary arithmetic,
which seems instructive and educational, and so we outline this
procedure in the following.

Required calculations are classified into two cases: (i) differen-
tiation with respect to λ, and (ii) differentiation with respect to
∆φ. These two cases are considered separately, as follows. Here
we assume that Z̄(θ) is twice differentiable, which is a direct con-
sequence of assumption (i) in Theorem 1 and/or Theorem 2, and
the definition of Z̄ in Eq. (23b).
(i) Case of differentiation with respect to λ

We consider here a prototypical case of Eq. (67):
∂G∞

∂λ
=

∂

∂λ
⟨sgn[Z̄(θ)+ λ]⟩

= lim
ϵλ→0

1
ϵλ


⟨sgn[Z̄(θ)+ λ+

]⟩ − ⟨sgn[Z̄(θ)+ λ]⟩

, (B.1)

in which λ+
≡ λ + ϵλ. The reason why we refer to this as

prototypical is that this particular case includes all elements for
deriving all other equations of (47), (49), (51d), (65), (67), (68d). In
Eq. (B.1), ⟨sgn[Z̄(θ) + λ+

]⟩ − ⟨sgn[Z̄(θ) + λ]⟩ ≡
 π
−π

sgn[Z̄(θ) +

λ+
] dθ−

 π
−π

sgn[Z̄(θ)+λ] dθ = ⟨sgn[Z̄(θ)+λ+
]−sgn[Z̄(θ)+λ]⟩,

and this sgn[Z̄(θ)+ λ+
] − sgn[Z̄(θ)+ λ] is related to the regions

∆i ≡ {(θ, h)| θi ≤ θ ≤ θ+

i , −1 ≤ h ≤ 1} as shown in Fig. B.1,
where θi and θ+

i respectively denote the ith roots of Z̄(θ)+ λ = 0
and Z̄(θ)+ λ+

= 0. Since Z̄ is twice differentiable, Z̄(θ+

i )+ λ+
=

Z̄(θi)+ Z̄ ′(θi)(θ
+

i − θi)+ λ+ ϵλ + O(ϵ2λ) = Z̄ ′(θi)(θ
+

i − θi)+ ϵλ +

O(ϵ2λ) = 0 implies θ+

i − θi = −
ϵλ

Z̄ ′(θi)
+ O(ϵ2λ), which results in

|θ+

i − θi| =
ϵλ

|Z̄ ′(θi)|
+ O(ϵ2λ). (B.2)

Also, observing the above situations in Fig. B.1, we have

⟨sgn[Z̄(θ)+ λ+
] − sgn[Z̄(θ)+ λ]⟩

=


i

|∆i| =


i

2|θ+

i − θi|, (B.3)

where |∆i| represents the area of the region ∆i. Plugging Eq. (B.2)
into Eq. (B.3) and plugging the resulting Eq. (B.3) into Eq. (B.1), we
finally obtain

∂G∞

∂λ
= 2


i

1
|Z̄ ′(θi)|

, (B.4)

which is already used in Eq. (67), (68b), and (68f).
(ii) Case of differentiation with respect to∆φ

Now, the above procedure in (i) is repeated for another
prototypical case of Eq. (66). Following this procedure, Eqs. (46),
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Fig. B.2. Case of the differentiation with respect to∆φ (for Eq. (66)).

(48), (51c), (64), and (68c) are obtained. In this case, in contrast to
Eq. (B.1), we start from

∂G∞

∂∆φ
=

∂

∂∆φ
⟨sgn[Z̄(θ)+ λ]⟩

= lim
ϵ∆φ→0

1
ϵ∆φ


⟨sgn[Z̄+(θ)+ λ]⟩ − ⟨sgn[Z̄(θ)+ λ]⟩


, (B.5)

in which Z̄+(θ) ≡ Z(θ + ∆φ + ϵ∆φ)− Z(θ). Similarly to the case
of Eq. (B.3), by observing the situations in Fig. B.2, we have

⟨sgn[Z̄+(θ)+ λ]⟩ − ⟨sgn[Z̄(θ)+ λ]⟩

= ⟨sgn[Z̄(θ)+ λ+ ϵ∆φZ ′(θ +∆φ)+ O(ϵ2∆φ)]

− sgn[Z̄(θ)+ λ]⟩ =


i

Di, (B.6)

where Di is defined by

Di ≡



 θi

θ+

i

2 sgn[Z̄ ′(θi)] dθ = 2 sgn[Z̄ ′(θi)](θi − θ+

i ),

if θ+

i < θi θ+

i

θi

−2 sgn[Z̄ ′(θi)] dθ = 2 sgn[Z̄ ′(θi)](θi − θ+

i ),

if θi < θ+

i

(B.7)

and θi and θ+

i represent the roots of Z̄(θ)+λ = 0 and Z̄+(θ)+λ =

0, respectively.
On the other hand, similarly to Eq. (B.2), θ+

i − θi is estimated as
follows. From Z̄+(θ+

i )+ λ = 0, we have

Z̄+(θ+

i )+ λ = Z(θ+

i +∆φ)+ ϵ∆φZ ′(θ+

i +∆φ)

+O(ϵ2∆φ)− Z(θ+

i )+ λ

= Z(θi +∆φ)+ (θ+

i − θi)Z ′(θi +∆φ)+ O(ϵ2∆φ)

+ ϵ∆φ[Z ′(θi +∆φ)+ (θ+

i − θi)Z ′′(θi +∆φ)+ O(ϵ2∆φ)]

+O(ϵ2∆φ)− [Z(θi)+ (θ+

i − θi)Z ′(θi)+ O(ϵ2∆φ)] + λ

= (θ+

i − θi)[Z ′(θi +∆φ)− Z ′(θi)] + ϵ∆φZ ′(θi +∆φ)

+ Z̄(θi)+ λ+ O(ϵ2∆φ) = 0, (B.8)

and from Z̄(θi)+ λ = 0, Eq. (B.8) implies

θi − θ+

i = ϵ∆φ
Z ′(θi +∆φ)

Z̄ ′(θi)
+ O(ϵ2∆φ). (B.9)
Fig. D.1. Z̄(θ)+ λ in the neighborhood of θ∗ .

Plugging Eq. (B.9) into Eq. (B.7) and plugging the resulting Eq. (B.7)
into Eq. (B.6) and then into Eq. (B.5), we obtain

∂G∞

∂∆φ
= 2


i

Z ′(θi +∆φ)

|Z̄ ′(θi)|
, (B.10)

which is used in Eqs. (66), (68a), and (68e).
All other equations are obtained analogously, and their deriva-

tion is omitted here.

Appendix C. Derivation of the inequality (56)

Here we describe how the inequality (56) is derived from
|H(H)| > 0 in Eq. (55). From Eqs. (51) and (52), |H(H)| is obtained
as

|H(H)| = H13(αH2
12 − H13H22)

= αH13


β

β


|Z̄ + λ|β−1Z ′

2
− β


|Z̄ + λ|β−1

×

|Z̄ + λ|β−1(Z ′)2


−β


|Z̄ + λ|β−1 sgn[Z̄ + λ]|Z̄ + λ|βZ ′′


, (C.1)

where Z̄ , Z ′, and Z ′′ respectively represent Z(θ + ∆φ) − Z(θ),
Z ′(θ +∆φ), and Z ′′(θ +∆φ).

In Eq. (C.1), the first term plus the second term becomes non-
positive:
|Z̄ + λ|β−1Z ′

2
−


|Z̄ + λ|β−1 

|Z̄ + λ|β−1(Z ′)2

≤ 0, (C.2)

since we have
|Z̄ + λ|β−1Z ′

2
=


|Z̄ + λ|

β−1
2 |Z̄ + λ|

β−1
2 Z ′

2
≤


|Z̄ + λ|β−1 

|Z̄ + λ|β−1(Z ′)2


(C.3)

from the Cauchy–Schwarz inequality.
On the other hand, in the third term of Eq. (C.1),


|Z̄ + λ|β−1


is

positive. Thus, since H13 > 0 and we have assumed |H(H)| > 0,
the inequality (56) ⟨sgn(Z̄ + λ)|Z̄ + λ|βZ ′′

⟩ < 0 has to be satisfied.

Appendix D. Evaluation of singular integrals in Eq. (49)

Here, we show that all the integrals involving |Z̄(θ)+ λ|β−1 in
Eq. (49) have finite values if Z̄(θ) is a C2 function (and hence locally
Lipschitz continuous) and Z̄ ′(θ∗) ≠ 0.

First, we assume Z̄ ′(θ∗) = a > 0, without loss of generality.
Then, in the ϵ-neighborhood of θ∗, there exists 0 < ā < a such
that |ā(θ − θ∗)| < |Z̄(θ) + λ| holds, as shown in Fig. D.1, since
Z̄(θ∗) + λ = 0 and β − 1 < 0. Thus, we obtain the following
estimate: θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1dθ <
 θ∗+ϵ

θ∗−ϵ

|ā(θ − θ∗)|
β−1dθ

= āβ−12
 θ∗+ϵ

θ∗

(θ − θ∗)
β−1dθ =

2
β
āβ−1ϵβ . (D.1)
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Also, the following inequality holds:

m
 θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1dθ <
 θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)dθ

< M
 θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1dθ, (D.2)

where m(<0) and M(>0) are respectively the minimum and the
maximum of Z ′(θ + ∆φ) for θ ∈ S. Using the estimate Eq. (D.1),
we obtain from Eq. (D.2)

m
2
β
āβ−1ϵβ <

 θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)dθ

< M
2
β
āβ−1ϵβ . (D.3)

Similarly to Eq. (D.3), the same kind of inequality is obtained for θ∗+ϵ

θ∗−ϵ

|Z̄(θ)+ λ|β−1Z ′(θ +∆φ)2dθ. (D.4)

From the above estimates, all the integrals in Eqs. (D.1)–(D.3) are
O(ϵβ) and they have finite values for sufficiently small ϵ. �

Appendix E. Proofs of ⟨f∗, 1 g⟩ → M|g(θ̄i)|, and Eq. (76)

(a) Proof for ⟨f∗, 1 g⟩ = M⟨
n

i=1 sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)⟩ →

M|g(θ̄i)| (ϵ → +0)
By the assumption, all θ̄i are isolated from each other, and g is

continuous at each θ̄i, and ∥g∥∞ = |g(θ̄i)| = |g(θ̄j)|. Also, from the
definition of∆ in Eq. (22),

n
i=1

sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)



=

n
i=1


sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)


. (E.1)

Since g is continuous at each isolated θ̄i, it is safely assumed that
for sufficiently small ϵ, g(θ) > 0 (or g(θ) < 0) is satisfied for
any θ ∈ [θ̄i − ϵ, θ̄i + ϵ] ≡ Iϵ , and


sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)


=

⟨∆(θ − θ̄i)|g(θ)|⟩ is immediate. As g is continuous on Iϵ , if there
exists a minimum of g at θ = θmin in Iϵ as well as a maximum at
θ = θ̄i in Iϵ , then the following estimate is obtained:

1
2nϵ

2ϵ|g(θmin)| ≤ ⟨∆(θ − θ̄i)|g(θ)|⟩ ≤
1

2nϵ
2ϵ|g(θ̄i)|. (E.2)

Now, θmin → θ̄i (ϵ → 0) since g is continuous in Iϵ . Therefore,

⟨∆(θ − θ̄i)|g(θ)|⟩ →
1

2nϵ
2ϵ|g(θ̄i)| =

1
n

g(θ̄i) . (E.3)

Then, by summingupEq. (E.3) over i andmultiplying byM , we have
⟨f∗, 1 g⟩ = M⟨

n
i=1 sgn[g(θ̄i)]∆(θ − θ̄i)g(θ)⟩ → M|g(θ∗)|. �

(b) Proof of Eq. (76)
We begin by proving the following:

⟨Z(θ + φ)∆(θ − θ̄i)⟩ →
1
n
Z(θ̄i + φ).

(uniformly for φ ∈ S, ϵ → 0). (E.4)

Here we assume that Z is locally Lipschitz continuous and that the
Lipschitz constant is given as k. Then, ⟨Z(θ+φ)∆(θ−θ̄i)⟩−

1
nZ(θ̄i+
φ) is evaluated as

⟨Z(θ + φ)∆(θ − θ̄i)⟩ −
1
n
Z(θ̄i + φ)

=


θ∈[θ̄i−ϵ, θ̄i+ϵ]

Z(θ + φ)∆(θ − θ̄i)−
1

2ϵ · n
Z(θ̄i + φ)dθ

=


θ∈[θ̄i−ϵ, θ̄i+ϵ]

1
2nϵ

[Z(θ + φ)− Z(θ̄i + φ)]dθ

<
1

2nϵ
· kϵ2, (E.5)

since |Z(θ + φ) − Z(θ̄i + φ)| < k|θ − θ̄i| (∀φ ∈ S). Likewise,
⟨Z(θ +φ)∆(θ − θ̄i)⟩−

1
nZ(θ̄i +φ) > −

1
2nϵ · kϵ2 is obtained. There-

fore, supφ∈S

Z(θ + φ)∆(θ − θ̄i)

−

1
nZ(θ̄i + φ)

 → 0 (ϵ → 0)
follows. �

Appendix F. Continuity of derivatives ∂H
∂∆φ

, ∂H
∂λ

, ∂2H
∂∆φ2 ,

∂2H
∂∆φ∂λ

,
∂2H

∂λ∂∆φ
, and ∂2H

∂λ2

Here the continuity of several derivatives of H is verified.
Since these derivatives of H are explicitly given in Eq. (51), their
continuity is directly verified using the (ϵ, δ)-definition of limit,
taking care of the contributions from singular integrals in Eq. (51).
For instance, the continuity of ∂

2H
∂λ2

is verified as follows. Note that
the continuity of other derivatives is verified analogously, using
the expressions in Eq. (51) and the results in Appendix E. Since
∂2H
∂λ2

is given by H33(∆φ, λ) in Eq. (51f), the following estimate is
obtained:

|H33(∆φ, λ+ δ)− H33(∆φ, λ)|

= |αβ⟨|Z(θ +∆φ)− Z(θ)+ λ

+ δ|β−1
− |Z(θ +∆φ)− Z(θ)+ λ|β−1

⟩ϵ̄-neighborhood of θ̄∗

+ αβ⟨|Z(θ +∆φ)− Z(θ)+ λ+ δ|β−1

− |Z(θ +∆φ)− Z(θ) + λ|β−1
⟩S\ϵ̄ -neighborhood of θ̄∗


< C1ϵ̄

β
+ C2ϵ < Cϵ, (F.1)

where the contribution from the ϵ̄-neighborhood of θ̄∗ is of O(ϵ̄β)
as shown in Appendix E, and the contribution from the other part
(the S \ ϵ̄-neighborhood of θ̄∗) can be set arbitrarily small (C2ϵ in
Eq. (F.1)) since the integrand is continuous. Thus, setting ϵ̄β as ϵ
in Eq. (F.1), the desired property is verified, i.e., ∀ϵ ∃δ such that
|H33(∆φ, λ+ δ)− H33(∆φ, λ)| < Cϵ. �
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