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Coupled Phase-Locked Loops 

Hisa-Aki Tanaka, Student Member, IEEE, Shin’ichi Oishi, and Kazuo Horiuchi, Fellow, IEEE 

Abstract-Dynamical properties such as lock-in or out-of-lock 
condition of mutually coupled phase-locked loops (PLL’s) are 
problems of practical interest. The present paper describes a 
study of such dynamical properties for mutually coupled PLL’s 
incorporating lag filters and triangular phase detectors. The 
fourth-order ordinary differential equation (ODE) governing the 
mutually coupled PLL’s is reduced to the equivalent third-order 
ODE due to the symmetry, where the system is anafyzed in the 
context of nonlinear dynamical system theory. An understanding 
as to how and when lock-in can be obtained or out-of-lock 
behavior persists, is provided by the geometric structure of the 
invariant manifolds generated in the vector field from the third- 
order ODE. In addition, a connection to the recently developed 
theory on chaos and bifurcations from degenerated homoclinic 
points is also found to exist. The two-parameter diagrams of 
the one-homoclinic orbit are obtained by graphical solution of 
a set of nonlinear (finite dimensional) equations. Their graphical 
results useful in determining whether the system undergoes lock- 
in or continues out-of-lock behavior, are verified by numerical 
simulations. 

I. INTRODUCTION 
UTUALLY COUPLED phase-locked loops (PLL’s) are 
frequently used in practical communication systems to 

synchronize geographically separated timing clocks [ 11, [2]. 
The dynamical properties of such PLL’s, e.g., their lock-in or 
out-of-lock conditions, present a problem of practical interest. 
Theoretical studies on lock-in condition have been carried 
out near the synchronized state [l], [2], while the dynamics 
occurring beyond this state has been recently studied in both 
single and mutually coupled PLL’s [3]-[6]. When two PLL’s 
are in the critical state where they are almost but not quite 
Synchronized, chaotic phenomena can be experimentally and 
numerically observed for a wide range of realistic parameters 
[6]. Endo and Chua called this critical desynchronized state 
near the synchronization (lock-in) as the “marginal out-of- 
lock condition” in [6]. In the present paper, we elucidate 
the nature of such marginality, thereby establishing the limit 
of synchronization. To do so, we apply nonlinear dynamical 
systems theory to determine the geometric structure of the 
system-generated invariant manifolds. 
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PLL 1 PLL 2 

Fig. 1. Block diagram of considered mutually coupled PLL’s 

Fig. 2. Triangular characteristics of the phase detector. 

11. ORDER REDUCTION 

Considered here are PLL’s that incorporate a voltage- 
controlled oscillator (VCO), a phase detector (PD) having 
triangular characteristics (Fig. l), and a loop filter (LF) com- 
prising of a simple RC filter with transfer function F ( S )  = 
l / ( l+~S) ,  which is known as a lag filter. Fig. 2 shows a block 
diagram of the system, and the following fourth-order ordinary 
differential equation (ODE), the phase model [61, describes the 
dynamics of the phases 

6, + 2<1&1+ h(@l - CDZ) = 6, 

where and are, respectively, the resultant phase of the 
output of VCOl and VC02 after subtracting Rt. Here, R repse- 
sents the synchronized angular frequency uniquely determined 
by the free-running angular frequencies of VCO 1 N C 0 2  and 
the system parameters presented in [6]. h is a 27r-periodic 
triangular function (Fig. l), while c1, cz, T I ,  rz, and S are nor- 
malized parameters, respectively, defined as c1 = 1/2=, 
(2 = 1/2=, r1 = Kz/Kl,  7-2 = r2/r1, and 6 = 
(w01 - W O ~ ) / ( K I  + Kz), in which Ki, ri, and wgi denote 
the total loop gain, loop filter time constant, and free-running 
angular frequency of PLL i (i = 1, 2), respectively. Our goal 
in this section is to reduce (1) to the simplest equivalent ODE. 
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For this purpose, we first normalize (1) to give Our attention is focused on the following three sets of 
chaotic parameters experimentally obtained by Endo and Chua 
161 : 4‘1 =pi  

4 2  = p 2 ,  

P1 = - Plh(% - q 2 )  - alp1 + 71 
$2 = - P a w % !  - 4 1 )  - a2p2 + Y2 

1) Asymmetric high damping [Case l)] 

(1 0.614, 52 0.331 
f o l  = 18 250 Hi<, f o 2  = 25 400 HZ 

(2) 

where q1 = @I, q2 = e2, Q~ = a l l ,  a2 = 2c2m2/.T/-;.2, p1 = r1 = 45 500/12 500, 7-2 = 5.027/5.298 
1, Pz = TI/TZ, 71 6, and 7 2  = - ( ~ i / ~ 2 ) 6 .  

It should be noted that symmetry reduces (2) to a third-order 
= p1 + p 2 ,  pz = p1 - p 2 ,  

6 Z 2 7 ~  f o l  - f o 2 / 4 5  500 + 12 500, 

Symletric high damping [Case 2)] 

-0.774 565. (6) 
ODE, by introduciI1g 2) 
Qi = 41 + q 2 ,  and Q2 = Q L  - q 2 ,  (2) becomes 

P2 = - 3) Symmetric low damping [Case 3)] 

(1 = 0.0914, 52 10.0964 
f o i  = 22 450H:~, foz  = 23 183Hz 

where a+ = a 1  + a2, a -  = ail - a2, /3+ = p1 + P 2 ,  

Note the solution for Pi, P2, and Qz can only be de- 
termined by (3b)-(3d). In (3b)-(3d) there are two nonlinear 

(8) terms -,L?-h(Q2) and - P + h ( Q 2 ) .  To reduce these two into 

One we the transformation The following parameter sets are, respectively, obtained for 
x = Pi/@- - P2/P+, y = J’2/P+, and z = Q 2 ,  which reduces 
(3b)-(3d) to the following Ihird-order ODE: 

P- = Pi - P 2 ,  Y+ = YI + YZ, and Y- = 71 - 7 2 .  

r1 = 12 440/12 200, r 2  = 2.16/2.45 
6 f 2 ~ f o 1  - fo2/12440 + 12200, = -0.186914. 

cases 11-31: 

A 1  = -1.242519, A2 = -0.037054 
B1 1 -0.019 424, B2 = -1.281 369 

-0.77456!5, p+ = 4.836228 
A1 = -1.960438, A2 = -0.502870 

li. = A i z  + . 4 q y ,  

y =Bo +Biz + B 2 y  - h ( ~ ) ,  
(9) Bo rz 6 

=P+y ,  (4) 

where A1 = (a-P- - tr+/3+)/20+, A2 = (/3.-//?+ - B1 = -1.353398, B 2  = -4.167234 
6 = -1.218 127, p+ = 13.686 562 

A1 -0.194297, A2 = -0.168230 
(10) 

P+/P-)a-/2,  Bo = r-/P+ = 6, B1 = -a-P-/2P+, and 
Bz = -(a-,L?- + a+p+)/2@+. Although h(x) can be either Bo 
sinusoidal or triangular depending on the type of the employed 
phase detector, we only consider the triangular function here. 

When transmission delays are incorporated into either phase 
equation (1) or (2), the samie reduction can be carried out by 
applying some assumptions (See Appendix I). 

111. RECEWISE-LINEAR ANALYSIS 
Since (4) is 27r-periodic with respect to z ,  let us concentrate 

on the region D = ((2, y, ,?)I - 7r - 6 I z 5 7r - S} in order 
to examine the geometric structure of the defined vector field. 
Region D can be divided into three segments: D+, DO, and 
D-,  respectively, defined by D+ = {(x, y, z)l7~/2 < z 5 

7r - 6 < z < -7r/2}, where the vector field in each segment 
is linear. Further, denote thle planes {(x, y, z ) ( z  = 3:7r/2} as 
E+, and E-, respectively. From (4) and the form of h ( z ) ,  it 
follows that unique equilibrium points at 0+, 00, 0- exists 
in a+, Do, D- , with their positions being, respectively, 

7T - S}, Do = ( ( 5 ,  y, .)I121 I ../a}> and D- = {(z, Y, .)I - 

B1 = -0.000891, B2 = -0.196079 
Bo = S = -0.186914, ,8+ = 2.156572. (1 1) 

These parameter sets, respectively, correspond to the real 
eigenvalues A,, A,,, and A, of the linearized matrix of the 
vector fields at 0+ and 0-, which are obtained by solving 

-A(A - A1)(A - B,) + P+(A1 - A) + AaBlA = 0 (12) 

giving (A,. A,,, A,) = (-1.242336, -2.931 525, 1.649973) 
for (9), (A,, A,,, A,) = (-1.405973, - 6.432011, 2.210312) 
for (lo), and (A,, A,,, A,) = (-0.194283, - 1.569894, 
1.373 800) for (11). In segment DO, the real eigenvalue A 1  and 
the pair of complex-conjugate eigenvalues A2, 3 are obtained 
by 

-X(A - A 1 ) ( A  - B2) +/?+(A - Ai )  + AzBlA = 0 (13) 

giving ( A i ,  X2,3) =(1.242706, -0.640591 f 2.103602i) for 
(9), ( A i ,  & , 3 )  = (-1.571786, -2.027943 * 2.933330i) 

, ( 5 )  for (lo), and (AI, X 2 . 3 )  = (-0.194310, -0.098033 0 k  (0, 0, f~ - S), 0 0  = (0, 0, 6). 

It should be noted that GI+ and 0- can be identified if we f 1.465 200i) for (11). The corresponding eigenvectors 
e,, e,, e,,, e l ,  and e 2 , 3  to the above eigenvalues determine 
the invariant manifolds W s ( O - ) ,  W;(Oo), W,S(Oo), and 

consider the vector field is {defined on the cylinderR2 x S1 = 
((2, Y, Z)l(X, Y) E R2 ,  ‘F S’}. 
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W'(O-)  (Fig. 4) or 3) p+ is mapped to the right of Ws(O-) for 
S < 6, (Fig. 5) ,  where p+ denotes the intersection of the 
plane C+ and the unstable manifold Wu(O+).  Situation 1) 
leads to a set of two nonlinear (finite dimensional) equations 
derived as shown in Appendix I1 where the values of fo2 

and T are unknown. By using the parameter values of 
f o l ,  (1 2 ,  and r1,2 in (9)-(ll), the critical parameter 6, (the 
cntical free-running angular frequency 62) for situation 1) 
can be obtained by solving this set of nonlinear equations, 
respectively, giving 

T = 0.787078 
and 

&z = 25 390.248, 
Y Z  i.e., 

Fig. 3. Saddle connection in piecewise-linear vector field. Generically, 
W"(O+)  becomes tangent to the weakly stable direction (eS in this case) 
after extended onto W " ( 0 - ) .  Vt;B(Oo) and LV,"(Oo), respectively, denotes 
the eigenspaces of the real eigenvalue and the complex conjugate eigenvalues 
at 00. 

6, = -0.773 508 

for (9), 

T = 0.614 754 
and 

f o ~  = 27811.590 

Y Z  

Fig. 4. Lock-in dynamics for 15 > 6,. W " ( O + )  is extended eventually 
to Oo (the lock-in state). Lock-in can be obtained from almost all initial 
conditions. 

W'(O*), as well as the extended unstable manifold 
Weu(O+),  where W'''(O+) is tangent at O+ to the linear 
space spanned by e" and e' (see [7] which proves the existence 
of such an invariant manifold). W" and W", respectively, 
represent the stable manifold and the unstable manifold. Fig. 3 
schematically depicts these invariant manifolds. From ( 5 ) ,  
(12), and (13), it is evident that the positions of O+, 00, and 
0- depend only on the parameter 6, and that the eigenvalues 
(vectors) are not dependent on 6. Hence, if we only change 
6, i.e., the free-running angular frequency f o 2  of PLL 2, then 
W s ( O - ) ,  WG(OO), W,"(Oo), Wu(O*),  and W""(O+) do 
not change their normal vectors or directions, though they are 
shifted in the z-direction by the position changes of 0- , 0+, 
and 00. Therefore, a critical parameter 6, is expected to 
exist under the following situation: 1) p+ is mapped onto the 
intersection of W s ( O - )  and C -  by the linear flow in Do 
for S = S, (Fig. 3). If S # S,, the following situations are 
expected to occur depending on whether S > S, or S < 6,: 
2) p+ is mapped to the left of W s ( O - )  on C- for 6 > 6, 

i.e., 
6, = -1.217405 

for (lo), and 
T = 1.075 136, 

and 
= 23 181.330 

i.e., 

S, = -0.186 488 (16) 
for (1 I), where T is the time interval p+ being mapped from 
E+ to C-. When 6 = 6,, the point mapped from p+ to the 
intersection of Ws(O-)  and C- asymptotically goes to 0- 
because A,, < A, < 0; being a situation that indicates a saddle 
connection (a homoclinic orbit in this case) exists between O+ 
and 0- as shown in Fig. 3. When S is slightly larger than S,, 
the orbits from the neighborhood of p+ go to the sink 00, 
i.e., the two PLL's undergo lock-in from their broad initial 
states (Fig. 4). However, when 6 is slightly less than 6,, being 
the case if the set of parameters are per (9)-(ll), then the 
point mapped from p+ on C- is on the other side of 00 
with respect to Ws(O-) .  Such a situation can be considered 
to lead to the loss of the global lock-in because Weu(O+) 
on C- (Fig. 5 )  prevents most initial points from reaching the 
sink 00. Adding to this lock-in mechanism, the homoclinic 
orbit at (14) in Case 1) is shown to appear near a degenerated 
homoclinic point-orbit-flip homoclinic point [8]-[ 101-at 
which the homoclinic orbit is doubly asymptotic to the strongly 
stable direction ess and the unstable direction e" at the saddle 
[ll]. Kokubu and Oka [12] demonstrated the existence of the 
Smale horseshoe and the invariant foliation in an unfolding 
of the orbit-flip homoclinic point, while the resultant chaotic 
phenomena near the orbit-flip homoclinic point is reported 
in [ 111. Homburg, Kokubu, and Krupa also demonstrated the 
Smale horseshoe generation in another degenarated homoclinic 
point-inclination-flip homoclinic point [ 101-at which the 
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Y Z  

Fig. 5. Out-oflock dynamics for 6 < 6,. Most initial conditions in the 
positive y region or in the neighborhood of 00 eventually go to 00, while 
solutions starting from initial conditions away from 00 in the negative y 

by solving the nonlinear equations defining a homoclinic orbit. 
Numerical simulations show a good agreement to the expected 
critical change of dynamics for various parameters in the 
neighborhood of the one-homoclinic branches. 

APPENIDIX 1 
TRANSMISSION DELAYS 

This Appendix describes the reduction of the phase model 
(1) or (2) which incorporates transmission delays. We con- 
sider a system of two mutually coupled PLL's incorporating 
transmission delays of the signals between two PLL's and the 
corresponding estimates of these delays-a system employing 
the so-called delay line compensation technique [2]. The 
governing equation of the phase differences for such a system 
that incorporates a loop filter whose transfer function F ( s )  = 
1/(1 + 7s) can be written as follows: 

region exhibit out-of-lock persistenltly. 
&&) + 2<1&(t) + h[@l(t - 712) - @ 2 ( t  - ?12)] = 6 

invariant manifolds We" and W" become tangent along the 
homoclinic orbit [ 131. The inclination-flip homoclinic point 

&,(t) + 2(2 f i&2( i )  + (2) 
h[@2(t - 721) - @l(t - +21)] = - (17) 

and the resultant dynamics in (4) will be reported in the future. 

Iv. BRANCH OF ,4 HOMOCLINIC ORBIT 

As mentioned in the previous section, a saddle connection, 
in this case a one-homoclinic orbit, appears at 6,; beyond 
which global lock-in of the two PLL's is lost. Such one- 
homoclinic orbit forms a submanifold of codimension one 
in the parameter space (see Theorem 3.5.1 in [lo], p. 399), 
namely, a one dimensional homoclinic branch in a suitable 
two-parameter space. Here, we consider a set of two practical 
parameters f 0 2  and K2, for which a one-homoclinic branch can 
be computed by solving the set of two nonlinear equations 
contained in Appendix I1 for various values of Kz. Fig. 6 
shows the computed one-homoclinic branch (dotted by 0) 
in the ( 1 0 2 ,  K2)-parameter space for Case 1). The ones for 
Cases 2) and 3), respectively, exhibit a similar characteristics 
between K2 and f 0 2  as in Fig. 6. Namely, the critical f02 

value is almost linearly proportional to K2 in the practical 
range of K2. These linear characteristics observed in Fig. 6 
seem to coincide with the experimental facts observed in a 
practical range of parameter Kz values. Employing the fourth- 
order Runge-Kutta integration scheme with the time step 0.01 
and setting certain (wide range of) initial states away from the 
synchronized states in (4), the critical change of dynamics is 
verified at the various sets of parameters dotted by + and 0 
in Fig. 6. The insets of Fig. 6 show the typical solutions in 
the corresponding dynamics projected to the (y, 2)-plane. 

where ~ i j  denotes the delay of signals traveling from PLL j 
to PLL i, while; i ,  j = 1, 2; i # j .  ? ~ j  denotes the estimate 
of q j  for delay compensation; i ,  j = 1, 2; i # j .  It is noted 
that (17) becomes (1) in case 712 = 0, ? l ~  = 0, 7-21 = 0, and 

Q1 = @1 + @ 2 ,  and QZ = Q1 -- @ 2 ,  transform (17) to 
?2j21 = 0. If ~ i j  = ?ij  hold, Pi = 61 + 62, Pz = 61 - 62, 

p1 =-  

for which ithe solution for F1, P2, and Q 2  can only be 
determined by (18b)-(18d). In addition, when rij = ~ j i  = T 

holds, the transformation 5 = P l / / L  - E$//?+, y = P2//3+m 
and z = 122,  reduces (18) 'to the following differential- 
difference equation: 

in which the time delay r appears only in h. V. CONCLUSION 

We presented theoretical and numerical results that explain 
experimental results of mutually coupled PLL's in the critical 
state between lock-in and out-of lock dynamics. Such critical 
state, namely, the limit of captureflock dynamics is now con- 
sidered to be the onset of the homoclinic orbit. For three typ- 
ical, realisic parameter sets, the one dimensional homoclinic 
bifurcation set in the ( f 0 2 ,  Ka)-parameter space is obtained 

APPENDIX I1 
NONLINEAR EQUATION FOR A HOMOCLINIC ORBIT 

This Appendix describes the derivation of the finite dimen- 
sional nonlinear equations that determine T and f o2  of the 
homoclinic orbit for given parameters. A saddle connection-a 
homoclinic orbit-exists when p+ is mapped by the linear flow 
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-e- : One-Homoclinic Branch 
- + : Out-Of-Lock 't : Lock-in 

Lock-in 
9Y 

I I I I I I I 1 1  25000 I 
40500 K 2  45500 

One-homoclinic bifurcation set for Case (1) in the (f02, I<Z)-parameter space. Two insets show the lock-in (observed at U) and the out-of-lock Fig. 6. 
dynamics (at +) projected to the (y, 2)-plane, respectively. This bifurcation set also presents the limit of synchronization between the two PLL's. 

in DO onto the line defined by Ws(O-)  n E-, as in Fig. 2. transformations 
Such a situation leads the following two conditions on T and 

1) 9 ( p + )  is located on W " ( O - ) ,  where 9 is a flow-defined 

2) From the definition of 9, the z element of 9 ( p + )  equals 

Since the flow in D+ is linear, Wu(O+) becomes a line. 
This leads the exact position of p+,  i.e., the intersection of 

f o 2 :  

map from E+ to E-. (Cond. 1); 

to -7r/2. (Cond. 2). 

W"(O+) and C+ 

where Q is given as 

in which f1 and f 2  are given by 

where a, w denotes the real and imaginary parts of X2, 

respectively. Equations (22) and (23) lead to the following 
expression of 9 

(26) 
Similary, W s ( O - )  becomes a plane spanned by e, and ess at 
0-, satisfying the following equation: ab+) = QJQ-lpY + (0 ,  0 ,  6IT 

where p; = p+ - (0 ,  0, 6 ) T ,  and J is given as 

To obtain 9, we transform the original coordinate ( x ,  y, Z )  

in DO to a canonical coordinate ( X ,  Y ,  2) by the following 
Combining (20), (21), (24), (26), and (27), Cond. 1, and Cond. 
2 lead to a set of two nonlinear equations in the unknowns T 
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and f o 2 ,  which can be solved via Newton’s method. Such 
computation for a saddle connection has been previously 
carried out in [4] for the second-order piecewise-linear ODE. 
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