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A phase synchronisation method is proposed for beam-scanning

control, utilising a newly identified phase synchronisation pattern.

The proposed method provides more flexible control compared to

conventional methods, even in noisy, non-ideal environments, as

confirmed by systematic simulations and mathematical analysis.

Introduction: Coupled oscillator arrays emerge in a wide range of

engineering issues. Examples include millimetre-wave power-combining

and beam-scanning control systems, central pattern generators (CPG)

in robotics, and Josephson junction arrays. In contrast to these

examples that utilise the mutually locked (synchronised) state, little

attention has been paid to unlocking states, presumably because few

applications have been sought in such unlocking situations. In beam-

scanning control systems using coupled oscillator arrays, a linear

phase progression must be maintained across the array for beam

forming (see Fig. 1), and the radiated beam is steered by controlling

the phase difference between the adjacent oscillators. Methods of

controlling such phase differences have been proposed and demon-

strated, respectively, by Stephan [1] and by Liao and York [2], where

oscillators at both ends of the array (oscillators 1 and N in Fig. 1a) are

controlled to steer the beam. In [2], antisymmetrical frequency

detuning is applied to the oscillators at the ends of the array. In

such coupled oscillator-based beam steering, the coupling is loose

(weak) when the oscillators are coupled radiatively for instance.

Accordingly, as shown in [2] when a particular scan angle, say

þ12.5�, is required, the frequencies of the end oscillators must be

9.985 and 10.015 GHz, respectively, for instance, while the other

oscillators have a frequency of 10.0 GHz. This suggests the end

oscillators require careful frequency control since the frequency

control resolution for the end oscillators must be within the order of

a few kilohertz.

Fig. 1 Coupled oscillator arrays for beam-scanning

a Conventional system
b Proposed, partially unlocking system

In this Letter, we consider a counterpart of the injection-locked state,

i.e. unlocking states, which emerge quite naturally. In the above

example, if the end oscillators have frequencies of approximately 9.0

and 11.0 GHz, respectively, for instance, then they are unlocking with

respect to the other oscillators. We have analysed such unlocking states,

and found that a robust, exactly linear phase progression is still obtained

in the array, except for a few oscillators near both ends. In the present

study, this somewhat counter-intuitive phenomena is systematically

analysed both numerically and theoretically, leading to a closed formula

of the phase progression for given frequencies and amplitudes of the

end oscillators (or injection signals). Based on this robust phase

progression in the unlocking state, a method of beam-scanning control

is proposed, which does not require high frequency control resolution.

Phase synchronisation in injection-locked oscillator arrays: For

weakly coupled quasi-optical oscillators, York [3] developed a

systematic reduction of model equations. In this Section, we follow

this reduction and explain how the linear phase progression is realised

in the coupled oscillator array. Contrary to previous studies, we

consider herein an injection-unlocking state, and analyse the phase

relationship in the oscillator array. We also assume a weak coupling
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between adjacent oscillators, as well as sufficiently uniform oscillator

characteristics. Under such conditions, a systematic derivation of the

phase equation for oscillators can be constructed [3], which eventually

takes the following form:

_yi ¼ oi þ k
P
j

Aj

Ai

sinðFþ yj � yiÞ ð1Þ

where yi, Ai and oi represent the oscillation phase, amplitude and free-

running frequency of the ith oscillator, respectively. Based on the above

assumptions, Ai,j� 1 holds and kAj=Ai�k is denoted by Dom. This

Dom is interpreted as the locking range of each oscillator, which is

assumed to be small as well as identical for all oscillators. The phase lag

F reflects the signal delay, which cannot be neglected for the case of

radiative coupling. However, if the coupling is constructed from one-

wavelength waveguides, F is assumed to be 0, and we focus on this

case. Similar to Liao and York [2], we consider herein the frequency

distribution as: o1¼OþDo, oN¼O�Do, o2, . . . , oN�1¼O, where
O and Do denote the common locked frequency and the frequency

detuning, respectively. Hereinafter, Dom is set to 1 without loss of

generality, and all numerical integrations are carried out by the fourth-

order Runge-Kutta method with a step size of 0.001.

In contrast to the locked state of linear phase progression, we

consider an unlocking state, which is obtained when jDoj>Dom. We

systematically changed Do=Dom from 1.0 to 20.0 and observed the

phase relationships. Fig. 2 shows a typical unlocking phase relationship

numerically observed in (1), where Do=Dom is set to 5.0, and a

snapshot of yiþ 1� yi is taken at t¼ 5000. This example exhibits the

following three characteristics observed in these unlocking cases:

Fig. 2 Phase progression pattern observed in unlocking system (1)

(i) Oscillators near both ends of the array oscillate at common

frequencies close to OþDo, respectively, and the other oscillators

oscillate at O.
(ii) Inside the array, a linear phase progression appears, in which the

phase difference yiþ1� yi (i¼ 4, . . . , 21) becomes time-constant and its

fluctuation is always negligibly small. In contrast to the inside of the

array, the oscillators near both ends exhibit a certain amount of

fluctuation in phase difference yiþ1� yi. The ranges for these fluctua-

tions are shown by as the ‘minimum and maximum phase differences’

in Fig. 2.

(iii) In such a phase progression, the phase difference fi�fiþ1(�Df)
is measured as Df�A2

inj=Do if the end oscillators have the same

oscillation amplitude A1¼AN�Ainj.

Phase control by unlocking oscillators: Based on these characteris-

tics, an application of the unlocking array is suggested to control the

linear phase progression both by the amplitude Ainj and the detuning

Do at the end oscillators. To consider these observations theoretically,

we introduce a slightly modified version of (1):

_y1 ¼ Oþ Ainj sinððOþ DoÞt � y1Þ þ sinðy2 � y1Þ
_yi ¼ Oþ sinðyiþ1 � yiÞ þ

sinðyi�1 � yiÞ; ð2 � i � N � 1Þ

_yN ¼ Oþ Ainj sinððO� DoÞt � yN Þ þ

sinðyN�1 � yN Þ ð2Þ

where the end unlocking oscillators in (1) are replaced by the external

injection signals Ainj
1,Nei(O�Do)t. This modification is shown schemati-

cally in Fig. 1b. Thus, the modification is not essential to the phase
o. 12



relationship considered here, and by this modification the analysis of (2)

becomes much more tractable, as follows. First, a new variable fi� yi�
Ot is introduced to (2), which yields:

_f1 ¼ A1
inj sinðDot � f1Þ þ sinðf2 � f1Þ;

_fN ¼ AN
inj sinð�Dot � fN Þ þ sinðfN�1 � fN Þ

_fi ¼ sinðfiþ1 � fiÞ þ sinðfi�1 � fiÞ; ð2 � i � N � 1Þ ð3Þ

For the long-term, slow movement of the phase relationship fi�fiþ1,

we reduce (3) by averaging the fast moving terms Ainjsin(Dot�f1) and

Ainjsin(�Dot�fN), assuming Dot as the fast variable. In this aver-

aging, a somewhat technical calculation is possible, using a nonlinear

transformation of variables. This result is mathematically validated for

large Do limit. Owing to lack of space, we omitted details. More

general results will be reported elsewhere. Finally, (3) is averaged to

yield:

_f1 ¼
ðA1

injÞ
2

2Do
þ sinðf2 � f1Þ

_fN ¼ �
ðAN

injÞ
2

2Do
þ sinðfN�1 � fN Þ;

_fi ¼ sinðfiþ1 � fiÞ þ sinðfi�1 � fiÞ ð4Þ

Interestingly, (4) takes the form of (1), and the phase progression

Df�fi�fiþ1 is explicitly given as

Df ¼ sin�1
A2
inj

2Do

 !
where Ainj � A1

inj ¼ AN
inj ð5Þ

which explains the observed phase progression inside the array.

Simulation results: Based on the closed formula (5) of the phase

progression, a new beam-scanning control method is proposed. First,

we check the consistency of the simulation results from (3), (4) and

the closed formula of Df (5). Fig. 3 shows typical examples of these

three data obtained for Do¼ 5.0 and 10.0 (in a normalised

frequency), where they are verified to be in good agreement. Also,

from systematic simulations, it is observed that the consistency

becomes better as Do increases. However, when Do becomes

small, say, 0.1, the consistency decreases because _f1�Do (or _fN�

�Do) is no longer large enough for validating the averaging results.

Thus, the numerical simulations and the analytical results (4) and (5)

suggest that the proposed method stably controls the linear phase

progression by tuning Ainj and=or Do.

Fig. 3 Comparison of phase progression Df obtained by (3), (4) and (5)

a Do¼ 5.0
b Do¼ 10.0
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The issues of robustness in the proposed method, i.e. noise immunity

and the effect of asymmetric detuning frequencies, are considered.

Extensive numerical simulations using random initial conditions are

carried out according to [4], assuming the same white noise in both

cases. Results suggest that the method of Liao and York [2] and the

proposed method have approximately the same noise immunity under the

above condition.

The effect of asymmetric detuning frequencies has also been consid-

ered numerically, both for the method of [2] (1) and for the proposed

method (4). Results show that the amounts of distortion in the linear

phase progression are approximately the same for both methods (data

not shown due to lack of space). This suggests that both methods have

approximately the same robustness as the asymmetric detuning frequen-

cies. However, the proposed method effectively controls the phase

progression by tuning the injection amplitude. In the above example

using asymmetric detuning d, the proposed method tunes the ampli-

tudes A1
inj and=or A

N
inj according to (5), resulting in perfect linear phase

progression.

Conclusions: We have proposed a novel control method for a linear

phase pattern in coupled oscillator arrays, which provides more

flexible and possibly robust control ability in coupled oscillators

with small locking ranges. The phase pattern is clearly described in

(5) and its validity and usefulness is confirmed by systematic

simulations.
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