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Abstract—We analyze the synchronizability of synchronous dis-
tributed oscillators (SDOs) [3], a novel clocking scheme for mi-
croprocessors. A computer-aided perturbation analysis is devel-
oped for such systems, where analytically tractable equations of
the clock phases are reduced from experimental data reflecting all
circuit details. Using this reduction, a theory is constructed to ex-
plain the underlying mechanism of the synchronization in SDOs.
It systematically explains the observed phenomena, the existence
and stability of the (mutually) synchronized states, and the transi-
tion from the in-phase synchronized state to the out-of-phase (but
still synchronized) state. Furthermore, the present theory of phase
reduction provides a new design principle of coupled oscillators
based on “the equation”; a precise delay control (less than the gate
delay) circuit can be designed in a simple and general form.

Index Terms—Clock distribution network, impulse sensi-
tive function, phase equation, ring oscillator, synchronization,
voltage-controlled oscillator.

I. INTRODUCTION

D IGITAL large-scale-integrated circuits (LSIs) are gener-
ally based on a synchronous scheme: a global clock signal

acts as the “conductor of the orchestra,” and each computing el-
ement acts as a “member of the orchestra,” performing its oper-
ations synchronously at the command of the “conductor.” Dis-
tribution of the clock signal in an LSI is thus an issue directly af-
fecting the computing power of the LSI. However, the increasing
size of circuits and rising clock frequencies are making it harder
for only one “conductor” to distribute the clock signal (here-
after “the clock” for short) within an allowable phase error due
to the skew and jitter. Clock networks using distributed voltage-
controlled oscillators are good candidates for overcoming this
difficulty because they can make multiple, mutually synchro-
nized “conductors” that distribute the clock to all the “members”
in unison [1]–[3]. Namely, this synchronous distributed oscil-
lator (SDO) approach has advantages: it reduces skew and jitter
coming from clock buffers and inter-line coupling in the con-
ventional clock distribution approaches. Also, in [3], static jitter
and skew caused by variation in the threshold voltage (as well
as the supply voltage at one of the oscillators) is numerically
investigated, where both jitter and skew are always reduced,
compared to those in the conventional (noncoupled) multiple
phase-locked loop (PLL) method. Although experimental data

Manuscript received July 5, 2000; revised June 17, 2002. This paper was rec-
ommended by Associate Editor R. Sridhar.

H.-A. Tanaka is with the Department of Electronic Engineering, University of
Electro-Communications, Tokyo, 182-8585 Japan (e-mail: htan@ee.uec.ac.jp).

A. Hasegawa is with the Department of Electrical and Electronic Engineering,
Gifu University, Gifu 501-1193, Japan.

H. Mizuno is with the ULSI Research Department, Hitachi Central Research
Laboratory, Tokyo 185-8601, Japan.

T. Endo is with the Department of Electronics and Communication, Meiji
University, Kawasaki 214-8571, Japan.

Publisher Item Identifier 10.1109/TCSI.2002.802361.

[2], [3] supports the feasibility of such distributed clock oscilla-
tors for high-performance circuits working at gigahertz frequen-
cies, there is still insufficient understanding of the ability and
limit of their synchronization. For this purpose, a general and
practical theory of such distributed systems is required. How-
ever, in such experimental environments, even though synchro-
nization phenomena can be observed clearly, neither the gov-
erning equation nor an analytically tractable model is available
from the system, and this hampers theoretical insights into the
synchronization.

Here, a method is developed to cope with such situations. We
derive a set of simple equations for the clock phases, from exper-
imental data reflecting all circuit details. This derivation is based
on the phase response curve theory and the averaging method,
which has been established in studies of nonlinear physics and
mathematical biology [10]–[14]. What is new and important in
the present study is the use of the experimental data about the
phase response from the (weak) impulsive perturbations to the
oscillating element. Such impulsive perturbation analysis has
been recently devised in the insightful study by Hajimiri and
Lee [4] on the phase noise in electrical oscillators. The present
study, on the other hand, focuses on the effect of certain reg-
ular perturbations applied to the oscillator, rather than on sta-
tistical properties derived from random perturbation. The re-
sulting phase equation of the clock explains the synchroniza-
tion ability of SDOs and predicts the limit of synchronization
due to signal delay and distortion. This prediction agrees with
observations by Mizuno and Ishibashi [3], and it shows the va-
lidity of the phase reduction method for this system. The phase
reduction method developed for SDOs can also be used as a
design methodology for certain coupled oscillators; we can de-
sign a circuit of coupled oscillators from its phase equation with
desired properties, and time-consuming exploration for circuits
with circuit simulators can be eliminated.

In Section II, we briefly review the background and some ob-
servations for an SDO circuit. Section III introduces basic ideas
and definitions required for the analysis of the system. In Sec-
tion IV, a computer-aided impulsive perturbation analysis is de-
veloped for the phase equation of the system. As a natural con-
sequence, a systematic explanation is obtained for the synchro-
nization observed in SDOs. Furthermore, based on the phase
equation, we are led to a new design methodology for coupled
multiple oscillators; a precise phase resolution (less than the
gate delay) generator is proposed as an example.

II. SDOS AND EXPERIMENTAL RESULTS

The core circuit of the SDO is simple: it consists of CMOS
oscillators and wires interconnecting them (Fig. 1). The oscilla-
tors can be ring oscillators (ROs) or differential ring oscillators
depending on the application.
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(a)

(b)

(c)

Fig. 1. (a) Core circuit of the SDO scheme in a linear array case. ROs are
interconnected by wire. Each RO is a loop with an odd number of CMOS
inverters. The dotted rectangles indicate the “cells” for which the sensitivity to
weak impulsive perturbations was measured. (b) Wire modeled as anRCchain.
(c) Inverter formed by a pair of pMOS and nMOS gates.

As shown in Fig. 1(a), such oscillators generally have an odd
number of inverting devices (e.g.,NOT-gates) in a closed loop.
This creates an unstable state, resulting in robust oscillation with
a rectangular waveform being used as the clock signal. Qual-
itatively, each inverting device can be roughly modeled as a
switch (with a finite delay) that inverts a digitalHIGH ‘1’/ LOW

‘0’ input to a LOW ‘0’/ HIGH ‘1’ output. However, modeling this
with quantitative accuracy is not an easy task because each in-
verter is a highly nonlinear device, reflecting the physics of
solid-state circuits. Here we consider an RO with a CMOS in-
verter [i.e., a pair consisting of a pMOS gate and an nMOS
gate; see Fig. 1(c)], as used in the experiments of Mizuno and
Ishibashi [3]. Semi-empirical models are used in the circuit sim-
ulator for the gates to reflect the measured characteristics of the
devices (we used the LEVEL3 model in HSPICE [5], [6]), so a
numerical transient analysis of the system can be done, taking
into account the details of the gates. Mizuno and Ishibashi [3]
used 0.25-m CMOS gates in their simulations, but we used
1.6/1.2- m (pMOS/nMOS) CMOS gates to make it easier to
reproduce the simulation.

Also, the interconnection between oscillators is a dynamical
system. In the simplest case, it can be modeled as a chain
of resistors and capacitors [anRC chain shown in Fig. 1(b)]
described by linear ordinary differential equations (ODEs).
However, the interconnection between oscillators often includes
multiple inverters for waveform regeneration, and nonlinear
ODEs are required for this case. Thus, a precise description of
the core circuit of the SDO requires a large number of lines of
code in the circuit simulator, which can have an “if then,
else ” structure.

Fig. 2. Mizuno and Ishibashi numerically considered a linear array case for
various values ofl (l = 4; . . . ; 20 mm) (originally shown in [3]). The abscissa
indicates the number of clock cycles (clock number) after two ROs initiate
the oscillation with a 90 phase difference. The ordinate indicates the phase
difference (phase error) between two ROs at each clock cycle. A transition
between states was observed atl = 14 mm: belowl , the phase difference
tended to zero and abovel , it tended to a constant. The change was observed
to be sharp at aroundl = l . A 0.25-�m CMOS technology was used, and each
17-stage RO operated at around 600 MHz.

Thus, the detailed description of the circuit itself is quite com-
plicated and far from analytically tractable. However, certain
clear patterns of mutual synchronization were observed in the
experiments done by Mizuno and Ishibashi (using a test chip op-
erating at 200–400 MHz [3]). They also made systematic (tran-
sistor-level) circuit simulations to explore the synchronization
ability of the SDOs. We followed their simulations (with dif-
ferent CMOS parameters as mentioned above) and obtained the
same patterns of the mutual synchronization, which are summa-
rized as follows.

1) The interaction between oscillators did not alter the orig-
inal waveform in each (uncoupled) oscillating element1 ;
the waveform itself was robust under the interaction.

2) Depending on the length of the wire between ad-
jacent oscillators, the system showed two different sta-
bilized states: complete synchronization with zero phase
difference (for shorter) and synchronization with a con-
stant phase difference (for longer) (Fig. 2).

3) The above two different synchronized states showed a
sharp transition at a certain wire length(Fig. 2).

The mechanism underlying these phenomena will be clarified
in Section IV.

III. B ASIC IDEAS AND DEFINITIONS

To make the description simpler, we focus on the case of a
one-dimensional (1-D) SDO [Fig. 1(a)] here. This simplifica-
tion is not essential and the same analysis can be made for any
network topology.

While the system can be analyzed by dividing it into oscilla-
tors (ROs) and interconnections (wires), we use virtual “cells”
[the dotted rectangles in Fig. 1(a)] to group oscillators and wires
together. This simple idea turns out to be powerful; it enables

1Precisely, the oscillating element is a combination of the oscillator and the
adjacent wires (defined as “cell” in Section III).
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(a)

(b)

Fig. 3. Numerical data for cell shown in the inset. (a) Phase shifts (+) due
to impulsive perturbations; the dotted rectangle in the center includes a LRR
at the (fixed) rising part of the periodic waveform. (b) The impulse sensitivity
(�( � ) � q ) for four different wire lengthsl. The abscissa indicates the phase
(of one oscillation cycle) at which the impulse was injected. The ordinate
indicates the amount of the phase shifted by the impulse. Four curves represent
the interpolation of the impulse sensitivity (forl = 20; 40;60, and80 mm)
using a Fourier series (ninth-order). The height of the injected impulse is
50 mA, and the charge displacementq is about 0.5 pC.

the following impulsive perturbation analysis and facilitates its
extension to higher dimensional networks and to more complex
interconnections having nonlinear effects.

Given a cell, we need information about its phase response to
impulsive perturbations,2 i.e.

1) the linear response region (LRR) [Fig. 3(a)];
2) the impulse sensitivity function (ISF) [Fig. 3(b)] defined

in the LRR.
LRR and ISF are defined as follows. If we have a stable pe-
riodic oscillation, an impulsive perturbation (e.g., a current in-
jection) can be applied at any phase (timing) of the one-cycle
oscillation. The perturbed oscillator is pulled back to the orig-
inal oscillation immediately after the impulse hits it, but a small
phase shift (compared to the nonperturbed oscillator) remains.
Thus, we can define a function of the phase shift with respect
to the timing at which the impulse is applied, and this function
is periodic with the period of the clock signal. We call it the
ISF here. If we fix the timing of the perturbation, the amount of
the phase shift is determined by the amount of the perturbation
(the pulse height). For all the cases (of circuits, circuit parame-
ters, and the timing of perturbation) that we considered, a linear

2The system in this study is not linear time-invariant (LTI) and the relationship
between the phase shift and the injected impulse height comes from the (local)
structure of the limit-cycle oscillator (in other words, Floquet theory). Namely,
the relationship between the phase shift and the injected impulse height is not
given analytically as in the LTI case, but given numerically as follows.

relationship held between the phase shift and the pulse height,
in a certain region around the zero pulse height [see the dotted
central region in Fig. 3(a)]. We call this region with linear char-
acteristics the linear response region, and it can be numerically
(or experimentally) identified. Because of this linearity, the ISF
is uniquely defined in the LRR. Interestingly, the ideas of ISF
and LRR have been used in studies related to limit-cycle os-
cillators in nonlinear physics and theoretical biology [9]–[13].
In those cases, the ISF is commonly called the phase response
curve (PRC), and the LRR is considered as the neighborhood of
the limit-cycle where an isochrone (i.e., a manifold having the
same phase) can be defined.

The notions of LRR and ISF for the voltage-controlled oscil-
lator (VCO) are devised in the recent study of phase noise by
Hajimiri and Lee. They first showed that a combination of cir-
cuit simulators and the notions of LRR and ISF provide a qual-
itatively and quantitatively powerful tool for jitter analysis and
for designing VCOs with low jitter. More recently, Demiret al.
presented a rigorous nonlinear analysis of phase noise based on
the Floquet theory [14]. They pointed out that the (small) pertur-
bation to the limit-cycle oscillator can be decomposed into the
tangential direction of the limit-cycle and the subspace spanned
by the remaining Floquet eigenvectors. Thus, for a weakly per-
turbed single VCO (limit-cycle oscillator), an experimental ap-
proach by Hajimiri and Lee and a mathematical foundation by
Demir et al. is now established. Then, we are naturally led to
the analysis of interacting multiple VCOs. In the next section,
we consider the phase dynamics of the distributed, interacting
VCOs.

IV. PHASE MODEL AND ITS IMPLICATIONS

In an LSI, the interconnecting wires have high resistance
(more than 100 /cm), and the maximum current in them is so
small (less than a few milliamperes) that the interacting oscil-
lating elements in the SDO fall into the LRR. Here we consider
the LRR and ISF of the virtual cell shown in Fig. 1(a). As
discussed in Section III, the LRR is defined by the relationship
between the injected impulse height and the phase shift of the
oscillator in the cell, and the ISF is defined by the
timing of the impulse and the corresponding phase shift. Then,
the (normalized) phase shift at time(due to the unit impulse
injected at time ) is given by

(1)

where is the maximum charge displacement across the ca-
pacitor on the node, is the unit step at , and is
the ISF, which has a period of .3 Because each oscillator
has a robust oscillation (a limit-cycle), the waveform of the os-
cillation (and the natural angular frequency) is robust under
the weak interaction between oscillators. However, the instan-
taneous phase of each (th) oscillator can be gradually shifted

3We used the same notation as in [4] for easier comparison between our theo-
retical results and those in [4]. In (1),�(! �) is defined as the maximum phase
shift (due toq ) at time� .
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by the perturbation, and this accumulated phase shiftcan be
expressed by

(2)

where is the current injected into the cell and is the
(fixed) time delay for the injected impulse to reach the oscil-
lator.4 Thus, the phase is determined by the current .
Conversely, this current is determined by the interaction
of the adjacent cells, the phasesand as fol-
lows. In each cell (th cell), the oscillator has a robust waveform
(i.e., the clock signal) and drives the voltages on the intercon-
necting wire. Then, the oscillating voltageon the outer nodes
of the th cell is a certain function of the instantaneous oscilla-
tion phase of the oscillator: , as far as the oscillation
is stable and the interconnection is fixed. It should be noted that
the waveform is not exactly the same as the clock signal on
the oscillator, since the clock is delayed and distorted along the
wire until it reaches the outer node. As the outer nodes of the
cells are resistively connected, the current (from the th
cell to the th cell) is given by , where is the
resistance between adjacent cells [Fig. 1(a)]. Then, (2) becomes

(3)

or equivalently

(4)

which implies that a closed relationship holds betweenand
. By setting we obtain

(5)

In (5), is small (less than a few mA), and
is very large (several hundred megahertz–1 GHz); the time

evolution of is much slower than that of . This situation
leads naturally to an application of the averaging method [6]
[well-known in the ordinary differential (ODE) theory], where
the slow motion of can be reduced by integrating

with
one cycle of . This integration can be handled by using the
(numerically obtained) Fourier series of and , which
leads to the following form:

(6)

4In [4], this time delay is assumed to be 0, because the impulse is applied
directly to the oscillator.

Fig. 4. Nonlinear phase characteristics (H( � ) in (8)) for different wire
lengths. All curves pass through zero. The slope at zero is positive for
l = 20 mm, nearly zero but still positive forl = 40, and negative forl = 60
and80 mm.

and

(7)

where is a (small) frequency deviation from the synchronized
frequency ; this frequency deviation comes from the in-
teraction (perturbation) effect as well as the threshold voltage
and the supply voltage variation. Process variation may possibly
affect the shape of slightly. However, as we will see, intro-
ducing a small variation in as well as does not alter the
system’s synchronization ability.

As in (6), computing requires and . Although
has been defined by the maximum charge displacement,
the exact value of is not necessarily needed for computing

. Instead of , we considered a fixed charge displacement
( that corresponds to the pulse size) and systematically

obtained the phase shift for different cases as in Fig. 6 (later). It
should be noted that the time delayof the impulse (the phase
delay ) vanishes in (6) and (7). However, and
contain information about the effects of the time delay, and the
shape of reflects the signal delay and distortion.

A. Synchronization Limit of the SDO

In the 1-D linear SDO, the interconnecting wire (RCchain)
has a symmetric bidirectional nature, and the currentsfrom
both (left and right) adjacent cells do not interact with each
other. Thus, for this particular case, the phase equation (7) takes
the following form:

(8)

As shown in Fig. 4, the form of strongly depends on wire
length . Although holds for any wire length (the
in-phase state always exists, see Appendix I), the slope at
can be positive or negative. For wire lengths less than 40 mm,
this slope is positive, and for longer cases ( mm),
it becomes negative and another zero crossing point appears as
shown in Fig. 4.

In Mizuno and Ishibashi’s study [3], the global effect of
variation (as well as supply voltage variation) at one of the os-
cillators is numerically investigated, where it is observed that
the static skew is proportional to deviation. The static skew
is the phase difference between oscillators and it corresponds to
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in (8). Also, the natural frequency de-
viation is proportional to deviation. From (8), it is clear
that the static skew is proportional to if the oscilla-
tors are mutually synchronized . Thus, the presented
theory is consistent to the observation in [3] regarding the effect
of deviation.

If we consider a 1-D circular network of SDO, a synchronized
state with uniform phase differences:

with ( : integer) is possible. For
such a solution of (7), linear stability theory proves that for pos-
itive the synchronized state is stable and for negative

it becomes unstable (see Appendix II). For example,
let’s consider circular SDOs with five or six (an odd or even
number of) oscillators. Numerical simulations (with HSPICE)
show that, for mm, only in-phase synchronized states

are observed for both cases. This can be explained
theoretically as follows: for , and

implies that this state is stable. On the other hand, for a
(formal) solution with , a certain amount of the frequency
deviation is required because
must be satisfied. However, is restricted to some small range
around because in ROs the oscillation period is pro-
portional to the gate delay of each invertor and this cannot be
altered much by the weak interaction due to . Then, such a
phase-lagged solution is not realized. Thus, the in-phase solution
with is the only stable state for the shorter wire case.

In contrast to the shorter wire case, for larger( mm), only
phase-lagged synchronized states are observed numer-
ically for the case of . Although the in-phase state is pos-
sible ( , as shown in Fig. 4), the slope of is nega-
tive and this implies that the in-phase state is unstable and cannot
berealized.Ontheotherhand, thephase-lagged(anti-phase)state
with is realized for the case of , because
are positive, and has a zero crossing point close to
and becomes small (as observed in the case
of 80 mm in Fig. 4). For the case of , the phase-lagged
state with does not exist, and neither the in-phase nor the
phase-lagged synchronized states are observed.

As we have observed, there is a critical length( mm)
between the stable in-phase state and the phase-lagged state,
at which holds. This critical length is unpracti-
cally large for the CMOS parameters we considered. However,
it scales down as the CMOS gates are scaled. As shown in Fig. 2,

is around 14 mm for 0.25-m CMOS parameters (with an op-
erating frequency of around 600 MHz), where the value ofis
in the “practical” range. Although we have chosen a particular
parameter set for the computer-assisted derivation of the phase
models, the predicted in-phase to phase-lagged state transition
does not depend on a particular set of parameters. Our theory
thus agrees with Mizuno and Ishibashi’s results [3]. Although
the shape of gradually approaches a sinusoidal wave as

becomes larger, the position of the(on these curves) is ob-
served to gradually shift to the right asbecomes larger. This
can be understood by the fact that and reflect the in-
ternal delay of the cell and this delay is mapped to the phase
shift of . Thus, the emergence of the phase-lagged syn-
chronized state can be explained by the deformation of ,
and the underlying mechanism of a sharp transition at(but
still supposed to be continuous) is clarified.

Fig. 5. Core circuit of CPG-like circuit incorporating the asymmetric
interaction of adjacent oscillators. The dotted area defines a cell. Instead of
a long wire between oscillators, resistorR is inserted. In the steady state,
adjacent nodes show rectangular voltage waveforms with phase difference of
� � �=M radian. Because the oscillation frequency is nearly the same as that
in a single (uncoupled) RO, a precise delay of� =M can be obtained at
nodes (a) and (b).

The above predictions guarantee the correct function of the
SDO for , that is, there is a unique, stable, in-phase state.
The theory also predicts that a limit of the SDO appears at.
Beyond , there is no stable in-phase state, which means that the
SDO no longer provides correct synchronous clocking for LSIs.
Although we have not proved thatmatches half the wavelength
of the clock signal on the wire,wedohave numerical evidence for
it. Therefore, for the SDO to function correctly, the wire length
should be shorter than a certain length, which is thought to be
inversely proportional to the clock frequency, that is, there is an
upper limit on the operating frequency in the SDO.

B. Novel Circuit Design

Having obtained a method for reducing the interacting oscil-
lators into a set of equations in terms of the phases, it is now
possible to design and analyze circuits based on “the equation.”
We consider here a precise delay generating circuit as a practical
example. In a single RO, the delay resolution (minimum phase
difference between two voltage signals on the nodes) is bounded
by a single gate delay . However, if multiple ROs
are coupled in a certain manner, the delay resolution can be of
the order of . In the previous (and first) circuit proposed
for this purpose, special 2-input, 1-output buffers (instead of
usual CMOS inverters) were developed, and the resulting circuit
had two-dimenisonal network topology with many interconnec-
tions [8]. Their circuit seems beautiful and somewhat ingenious.
However, a question arises: if certain good oscillators (in partic-
ular, ones having noise immunity) are available, is it not possible
to achieve the function by simply interconnecting those oscilla-
tors (instead of developing a special buffer)?

Based on “the equation” discussed above and an analogy to the
centralpatterngenerator (CPG)circuit [11],asimplerandgeneral
formulation of circuits is possible, where the network topology is
1-D (fewer interconnections), and each oscillator can be any type
of oscillator (in practice, noise immunity is essential). As a real-
ization of the above idea, we consider here the simplest case, i.e.,
ROs and one inverter on the wire (Fig. 5). The cell can be defined
as in Fig. 5. For this choice of the cell, we have checked that the
voltagewaveforms atnodes (l), (a), and (r) in the isolatedcell (see
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(a)

(b)

Fig. 6. Numerical data for cell shown in the inset. (a) Phase shifts due to
impulsive perturbations; the injection from the left node(!) and the right node
( ) are measured separately. (b) The impulse sensitivity(�( � ) � q ) for both
directions; impulse from the left node(!) and right node( ). The impulse
height is 50 mA, and the charge displacementq is about 0.5 pC.

Fig.5)coincidewith thosein thefullsystem(whenthecellsare in-
terconnected).Thus, thischoiceofcell iswell defined. Incontrast
to the symmetric interaction in the SDO, in this CPG-like circuit,
the interaction ishighlyasymmetric; theLRRandISFmustbede-
finedseparately for the impulsesfromthe leftandrightdirections.
Then, thephaseequation for thissystemtakes the following form:

(9)

In (9), unlike (8) for the SDO, the effect from the left
( )th cell dominates and from the right ( th)
cell is negligible, because the phase shift is negligible for any
timing of the perturbation from the node (r). has
multi-modal characteristics and there are two zero crossing
points as shown in Fig. 7; one is very close
to (this is analytically obtained in Appendix I). At this point,
the slope is negative, and the other one is close to
and and here is positive and can be close to

for a certain . This implies that
in (9), so the phase-lagged state is the only stable
synchronized state (see Appendix II). Numerical simulation of
this system verifies this prediction (as shown in Fig. 8 for the

case).
Thus, a difference between our CPG-like circuit and the SDO

can be clarified from their phase equations (8) and (9). For the
CPG-like circuit in Fig. 5, the phase-lagged state (uniform phase
difference of radian) is the only stable state, as opposed to
the in-phase state (no phase difference) for the SDO. This pre-
diction was verified using HSPICE under the same simulation

Fig. 7. Nonlinear phase characteristics (H ( � ) in (9)) with resistanceR =
100 
.

Fig. 8. Oscillation waveforms in the CPG-like circuit (Fig. 5), having five
coupled (15-stage) ROs.

protocol used in the above SDO case (Fig. 8), including the sim-
ulation in a slightly noisy environment.

V. CONCLUSION

This study has presented a computer-aided phase reduction
method for coupled oscillators; the SDO. The method is based
on the fact that the oscillators interact weakly in a practical
situation on an LSI chip, and on the use of the ISF (or PRC) from
experimental data. Explicit dynamical phase equations for ROs
and coupled ROs can be derived in the first place, which enables
theoretical insights into their synchronization ability as well as
synchronization limit.Thepresentedphase reductionhas general
applicability,andthisbenefitsan“equation-based”designofcou-
pledoscillatorsystems thathaveasimpleandgeneral structure.

APPENDIX I
ANALYTICAL DESCRIPTION OF THEPHASE

COMPARISONCHARACTERISTICS

This appendix shows an analytical approach to describe some
properties of : a zero crossing point of and the slope
of at that point.

From the definition (6), the phase comparison characteristics
can be determined by and . For the 1-D SDO,

the waveforms of and are exactly the same and can be
given by

(10)
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and the corresponding ISF becomes

(11)

with . Then, is obtained as

(12)

From (12), we have
, which explains why all phase comparison

characteristics in Fig. 4 (obtained from the experimental
data of the ISFs) pass the.

For the CPG-like circuit, the waveforms of are slightly
different and the phase shiftdue to the inverter should be taken
into account as follows:

(13)

and

(14)

with . Then we
have

(15)

If and , then holds. However, as
and , and and are slightly different, the zero crossing

point of (15) is slightly shifted from . This explains why the
zero crossing point in the experimental data is close to, as
shown in Fig. 7.

Now we consider the situation where a “cell” (defined in
Section III) is perturbed by an external impulse. For this cell,
a limit cycle is defined in the (high-dimensional) state space
and the external impulse is given by a perturbation vector
at some point of the limit cycle . In the neighborhood of ,
a local coordinate is given by the tangential direction ofand
the “isochrone: which defines the phaseof the oscillation. On
this coordinate, the perturbation is decomposed into two
elements: one is tangential to and the remaining is tangential
to the isochrone. In the present situation we consider, the limit
cycle is strongly attractive and the remaining element dies out
immediately (after a signal delay in the cell). It is noted that
the tangential direction of is not necessarily orthogonal to the
isochrone. (A simple model is analyzed to consider this nature
in [15].) However, if this orthogonality is satisfied (at least ap-
proximately), a great deal of simplification can be made in the
expression of . Here we will consider such a hypothetical
situation and see what can be concluded.

If the orthogonality is assumed, the phase shift (due to
) is simply given by

(16)

where denotes the time derivative of and it is tan-
gential to . If we consider the situation where the state
variables are node voltages and an impulse is applied to the

th node, then , and are respectively given as
,

and , where
denotes the derivative with respect to phase. Then, the phase
shift (16) becomes

(17)

By the definition of the ISF in (1), corre-
sponds to .

In our particular examples (1-D SDO and CPG-like circuit),
corresponds to the interaction of the adjacent cells;

. It should be noted that the cell in these

cases is spatially extended and the denominator
contains information about the signal delay due to the spatially
extended interconnections.

If the denominator is a constant, then
holds, so

and is obtained. This implies
that the phase comparison characteristics are an odd function
and do not match the experimental data shown in Fig. 4.
Here, the above insight that reflects the spatially
extended nature of the cell is essential to explain the charac-
teristics of . This insight and (12) predict that the slope

is positive for shorter wire lengths (where
can be considered to be nearly a constant and )
and can be negative for longer wire lengths because

reflects a larger signal delay in the cell and
deviates from a constant. This prediction is consistent with the
experimental data in Fig. 4 where changes from positive
to negative as the wire lengthbecomes larger.

APPENDIX II

This appendix shows a criterion for the linear stability of the
mutually synchronized states. We assume a synchronized state

and introduce a small pertur-
bation to such that . Then, (8) becomes

(18)

After removing the synchronized part in (18), we obtain the
linear ODE for as

...

...
...

. . .
. . .

. . .
. . .

...

...

(19)

in which , and
. The matrix in (19) is known as a circulant matrix and
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its eigenvalues and eigenvectors can be explicitly obtained
as

(20)

Then, holds for any , and , and the stability
of the synchronized states can be determined by in (19).
For the in-phase state with
and implies it is stable, and for it is
unstable. Also, if the phase-lagged synchronized state satisfies

, then it is stable
(unstable). The same analysis can be made for the stability for
(9). If the term in (9) is neglected, the linear ODE for
the perturbation is obtained from (19) by setting , and
the same stability criterion is obtained. For the
synchronized state is stable and for , it is unstable.
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