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Synchronizability of Distributed Clock Oscillators

Hisa-Aki Tanaka, Akio Hasegawa, Hiroyuki Mizuno, and Tetsuro Ergknior Member, IEEE

_ Abstract—We analyze the synchronizability of synchronous dis- [2], [3] supports the feasibility of such distributed clock oscilla-
tributed oscillators (SDOs) [3], a novel clocking scheme for mi- tors for high-performance circuits working at gigahertz frequen-
croprocessors. A computer-aided perturbation analysis is devel- ¢iag there is still insufficient understanding of the ability and

oped for such systems, where analytica_lly tractable equati_ons of limit of their svnchronization. For this purose. a general and
the clock phases are reduced from experimental data reflecting all y : purp »ag

circuit details. Using this reduction, a theory is constructed to ex- Practical theory of such distributed systems is required. How-
plain the underlying mechanism of the synchronization in SDOs. ever, in such experimental environments, even though synchro-
It systematically explains the observed phenomena, the existencenijzation phenomena can be observed clearly, neither the gov-
and stability of the (mutually) synchronized states, and the transi- - oping equation nor an analytically tractable model is available

tion from the in-phase synchronized state to the out-of-phase (but . - . .
still synchronized) state. Furthermore, the present theory of phase from the system, and this hampers theoretical insights into the

reduction provides a new design principle of coupled oscillators Synchronization.
based on “the equation”; a precise delay control (less than the gate  Here, a method is developed to cope with such situations. We

delay) circuit can be designed in a simple and general form. derive a set of simple equations for the clock phases, from exper-
Index Terms—Clock distribution network, impulse sensi- imentaldatareflecting all circuit details. This derivation is based
tive function, phase equation, ring oscillator, synchronization, on the phase response curve theory and the averaging method,

voltage-controlled oscillator. which has been established in studies of nonlinear physics and
mathematical biology [10]-[14]. What is new and important in
I. INTRODUCTION the present study is the use of the experimental data about the

) o phase response from the (weak) impulsive perturbations to the
D IGITAL large-scale-integrated circuits (LSIs) are genefsgiliating element. Such impulsive perturbation analysis has

ally based on a synchronous scheme: a global clock sigpglay recently devised in the insightful study by Hajimiri and
acts as the “conductor of the orchestra,” and each computing|&ke [4] on the phase noise in electrical oscillators. The present
ement acts as a “member of the orchestra,” performing its 0pgfdy, on the other hand, focuses on the effect of certain reg-
ations synchronously at the command of the “conductor.” Digjar perturbations applied to the oscillator, rather than on sta-
tribution of the clock signalin an LSl is thus an issue directly atjstical properties derived from random perturbation. The re-
fecting the computing power of the LSI. However, thelncreasugming phase equation of the clock explains the synchroniza-
size of circuits and rising clock frequencies are making it hardggn apility of SDOs and predicts the limit of synchronization
for only one “conductor” to distribute the clock signal (heregye to signal delay and distortion. This prediction agrees with
after “the clock” for short) within an allowable phase error dugpservations by Mizuno and Ishibashi [3], and it shows the va-
to the skew and jitter. Clock networks using distributed voItagﬁdity of the phase reduction method for this system. The phase
controlled oscillators are good candidates for overcoming thisqyction method developed for SDOs can also be used as a
difficulty because they can make multiple, mutually synchrgesign methodology for certain coupled oscillators; we can de-
nized “conductors” that distribute the clock to all the “membersgign a circuit of coupled oscillators from its phase equation with
in unison [1]-[3]. Namely, this synchronous distributed oscCilyesjred properties, and time-consuming exploration for circuits
lator (SDO) approach has advantages: it reduces skew and jil{&¥, circuit simulators can be eliminated.
coming from clock buffers and inter-line coupling in the con- |, section 11, we briefly review the background and some ob-
ventional clock distribution approaches. Also, in [3], static jittegervations for an SDO circuit. Section Il introduces basic ideas
and skew caused by variation in the threshold voltage (as wWgllg definitions required for the analysis of the system. In Sec-
as the supply voltage at one of the oscillators) is numericaliip |, a computer-aided impulsive perturbation analysis is de-
investigated, where both jitter and skew are always reducggioped for the phase equation of the system. As a natural con-
compared to those in the conventional (noncoupled) multiplgquence, a systematic explanation is obtained for the synchro-
phase-locked loop (PLL) method. Although experimental dagg ation observed in SDOs. Furthermore, based on the phase
equation, we are led to a new design methodology for coupled
Manuscript received July 5, 2000; revised June 17, 2002. This paper was m@dltiple oscillators; a precise phase resolution (less than the
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Fig. 2. Mizuno and Ishibashi numerically considered a linear array case for
various values of (I = 4, ..., 20 mm) (originally shown in [3]). The abscissa
indicates the number of clock cycles (clock number) after two ROs initiate

(b)
the oscillation with a 99 phase difference. The ordinate indicates the phase
MOS difference (phase error) between two ROs at each clock cycle. A transition
j <P between states was observed.at= 14 mm: below!.., the phase difference
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tended to zero and above, it tended to a constant. The change was observed
<« nMOS to be sharp at arourid= {... A 0.25.+um CMOS technology was used, and each
17-stage RO operated at around 600 MHz.

. . - Thus, the detailed description of the circuit itself is quite com-
Fig. 1. (a) Core circuit of the SDO scheme in a linear array case. ROs ar . .
interconnected by wire. Each RO is a loop with an odd number of cmoglicated and far from analytically tractable. However, certain
inverters. The dotted rectangles indicate the “cells” for which the sensitivity ttlear patterns of mutual synchronization were observed in the
weak impulsive perturbations was measured. (b) Wire modeled B€ahain. ; ; ; ; i ; -
() Inverter formed by a pair of pMOS and nMOS gates. exp_erlments done by Mizuno and Ishibashi (using atest_chlp op

erating at 200—400 MHz [3]). They also made systematic (tran-

sistor-level) circuit simulations to explore the synchronization

As shown in Fig. 1(a), such oscillators generally have an odgility of the SDOs. We followed their simulations (with dif-

number of inverting devices (e.gipT-gates) in a closed loop. ferent CMOS parameters as mentioned above) and obtained the
This creates an unstable state, resulting in robust oscillation wighme patterns of the mutual synchronization, which are summa-
a rectangular waveform being used as the clock signal. Quaked as follows.
itatively, each inverting device can be roughly m‘o<?eled aSs a1) The interaction between oscillators did not alter the orig-
sw!tch (with a finite delay) that inverts a digitalGH 1./LOW. inal waveform in each (uncoupled) oscillating element
0'input to aLow ‘0"/HIGH ‘1" output. However, modeling this - the waveform itself was robust under the interaction.
with quantitative accuracy is not an easy task because each IN2) Depending on the length of the wifesl) between ad-
verter is a highly nonlinear device, reflecting the physics of = jacent oscillators, the system showed two different sta-
solid-state circuits. Here we consider an RO with a CMOS in- hjjized states: complete synchronization with zero phase
verter [i.e., a pair consisting of a pMOS gate and an nMOS jfference (for shorteh) and synchronization with a con-
gate; see Fig. 1(c)], as used in the experiments of Mizuno and  gant phase difference (for longgr(Fig. 2).

Ishibashi [3]. Semi-empirical models are used in the circuit sim- 3) The above two different synchronized states showed a
ulator for the gates to reflect the measured characteristics of the * gharp transition at a certain wire lendih(Fig. 2).

devices (we used the LEVEL3 model in HSPICE [5], [6]), so a
numerical transient analysis of the system can be done, takin
into account the details of the gates. Mizuno and Ishibashi [I
used 0.25:m CMOS gates in their simulations, but we use
1.6/1.2um (pMOS/nMOS) CMOS gates to make it easier to
reproduce the simulation.

Also, the interconnection between oscillators is a dynamical 10 make the description simpler, we focus on the case of a
system. In the simplest case, it can be modeled as a ch@iig-dimensional (1-D) SDO [Fig. 1(a)] here. This simplifica-
of resistors and capacitors [&C chain shown in Fig. 1(b)] tion is not essential and the same analysis can be made for any
described by linear ordinary differential equations (ODEs)etwork topology. o _
However, the interconnection between oscillators often includesVVhile the system can be analyzed by dividing it into oscilla-
multiple inverters for waveform regeneration, and nonline4?rs (ROs) and interconnections (wires), we use virtual “cells”
ODEs are required for this case. Thus, a precise description @€ dotted rectangles in Fig. 1(a)] to group oscillators and wires
the core circuit of the SDO requires a large number of lines #tgether. This simple idea turns out to be powerful; it enables
code in the circuit simulator, which can have ah then, Iprecisely, the oscillating element is a combination of the oscillator and the
else ” structure. adjacent wires (defined as “cell” in Section Ill).

%he mechanism underlying these phenomena will be clarified
Section IV.

I1l. BASIC IDEAS AND DEFINITIONS
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o I relationship held between the phase shift and the pulse height,
0.0 in a certain region around the zero pulse height [see the dotted
- central region in Fig. 3(a)]. We call this region with linear char-
::, 008 \ acteristics the linear response region, and it can be numerically
5 om (or experimentally) identified. Because of this linearity, the ISF
8 - is uniquely defined in the LRR. Interestingly, the ideas of ISF
£ \ and LRR have been used in studies related to limit-cycle os-
-0.10 cillators in nonlinear physics and theoretical biology [9]-[13].
o In those cases, the ISF is commonly called the phase response
400 300 200 100 0 100 200 300 400 curve (PRC), and the LRR is considered as the neighborhood of
Height of impuise i (mA) P . . . .
the limit-cycle where an isochrone (i.e., a manifold having the
@ same phase) can be defined.
The notions of LRR and ISF for the voltage-controlled oscil-
ns =40 mm lator (VCO) are devised in the recent study of phase noise by

Hajimiri and Lee. They first showed that a combination of cir-
cuit simulators and the notions of LRR and ISF provide a qual-
itatively and quantitatively powerful tool for jitter analysis and

for designing VCOs with low jitter. More recently, Dert al.
presented a rigorous nonlinear analysis of phase noise based on
the Floquet theory [14]. They pointed out that the (small) pertur-
bation to the limit-cycle oscillator can be decomposed into the

Phase Shift (ns)

o 4 W ”;h '°°d 225 20 315 360 tangential direction of the limit-cycle and the subspace spanned
ase (degree) by the remaining Floquet eigenvectors. Thus, for a weakly per-
(®) turbed single VCO (limit-cycle oscillator), an experimental ap-

Fig. 3. Numerical data for cell shown in the inset. (a) Phase shifisdie proach by Hajimiri and Lee and a mathematical foundation by

to impulsive perturbations; the dotted rectangle in the center includes a L%ﬁemir et al. is now established. Then. we are naturally led to
at the (fixed) rising part of the periodic waveform. (b) The impulse sensitivi : . !

t . . . . .
(T(-) - ¢.) for four different wire lengthg. The abscissa indicates the phasghe analysis of interacting multiple VCOs. In the next section,
(of one oscillation cycle) at which the impulse was injected. The ordinatwe consider the phase dynamics of the distributed, interacting
indicates the amount of the phase shifted by the impulse. Four curves represpRtog
the interpolation of the impulse sensitivity (for= 20, 40, 60, and80 mm) ’
using a Fourier series (ninth-order). The height of the injected impulse is

o . ) ] - _In an LSI, the interconnecting wires have high resistance
extension to higher dimensional networks and to more complgy || (less than a few milliamperes) that the interacting oscil-

interconnections having nonlinear effects. lating elements in the SDO fall into the LRR. Here we consider
Given a cell, we need information about its phase responsaf@ LRR and ISF of the virtual cell shown in Fig. 1(a). As
impulsive perturbations,i.e. discussed in Section IlI, the LRR is defined by the relationship
1) the linear response region (LRR) [Fig. 3(a)]; between the injected impulse height and the phase shift of the
2) the impulse sensitivity function (ISF) [Fig. 3(b)] definedoscillator in the cell, and the ISE=I'(w,7)) is defined by the
in the LRR. timing of the impulse and the corresponding phase shift. Then,

LRR and ISF are defined as follows. If we have a stable pthe (normalized) phase shift at tinigdue to the unit impulse
riodic oscillation, an impulsive perturbation (e.g., a current irinjected at timer) is given by

jection) can be applied at any phase (timing) of the one-cycle

_oscillatipn. _The_ pertur_bed oscillator _is pulled l_Jac_k to the orig- ho(t,7) = F(WOT)u(t —7) 1)
inal oscillation immediately after the impulse hits it, but a small Gmax

phase shift (compared to the nonperturbed oscillator) remains. . . .

Thus, we can define a function of the phase shift with respé’(‘i‘“?reqmaX IS the maximum charge displacement across Fhe ca-
o the timing at which the impulse is applied, and this functiof2itor on the nodey(-) is the unit step at = 7, andl'( - ) is

is periodic with the period of the clock signal. We call it thj:e ISF, which has a period @ir /wy.° Because each oscillator

ISF here. If we fix the timing of the perturbation, the amount as a robust oscillation (a limit-cycle), the waveform of the os-

%Hation (and the natural angular frequengy) is robust under

the phase shift is determined by the amount of the perturbati Ki ion b i H he i
(the pulse height). For all the cases (of circuits, circuit parame V€@ Interaction between oscillators. However, the instan-

ters, and the timing of perturbation) that we considered, a lindgpeous phase of eacitt) oscillator can be gradually shifted

2The system in this study is not linear time-invariant (LTI) and the relationship
between the phase shift and the injected impulse height comes from the (local)
structure of the limit-cycle oscillator (in other words, Floquet theory). Namely, 3We used the same notation as in [4] for easier comparison between our theo-
the relationship between the phase shift and the injected impulse height is metical results and those in [4]. In (I)(w,7) is defined as the maximum phase
given analytically as in the LTI case, but given numerically as follows. shift (due tog,,.x) at timer.
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0.01

by the perturbation, and this accumulated phase ghifan be e =80 MM~ g
expressed by -0 e By
t ¥ 00t . N e ,/I
. o N \ K
Pi(t +tg) = [m h(t, 7)i(T) dr (2) é o0 “:;... \\ \ //, //
wherei() is the current injected into the cell ang is the é o .““;\ somm /'/
(fixed) time delay for the injected impulse to reach the oscil- 3 004 /! RN ey
lator# Thus, the phase; is determined by the currerifr). T .00 4omm o \\ ',;j/"v\
Conversely, this currenfr) is determined by the interaction 006 ANl 20 mm
of the adjacent cells, the phasgsand¢; (7 = ¢ £ 1) as fol- oor
lows. In each cellh cell), the oscillator has a robust waveform "o 45 90 135 180 225 270 315 360
Phase (degree)

(i.e., the clock signal) and drives the voltages on the intercon-
necting wire. Then, the oscillating voltaggon the outer nodes Fig. 4. Nonlinear phase characteristicH((-) in (8)) for different wire
of theith cell is a certain function of the instantaneous oscillaengths. All curves pass through zero. The slope at zero is positive for
tion phase of the oscillatowor + ¢;, as far as the oscillation ! = 20 mm, nearly zero but still positive fdr= 40, and negative fof = 60
is stable and the interconnection is fixed. It should be noted tifat = "
the waveformy; is not exactly the same as the clock signal on
the oscillator, since the clock is delayed and distorted along tﬂ@d
wire until it rgaf:hes the outer node. As tbhe outer nodeg of the ¢Z = + Hy(hig1 — bisio1 — bi) @)
cells are resistively connected, the currént) (from the jth
cell to theith cell) is given byR=*(v; — v;), whereR is the whereg; is a (small) frequency deviation from the synchronized
resistance between adjacent cells [Fig. 1(a)]. Then, (2) becomegjuency(~wy); this frequency deviation comes from the in-
£ : teraction (perturbation) effect as well as the threshold voltage
_ woT + (/)z) L. . X
Pi(t+1tq) = / e Z [vj(woT + ;) and the supply voltage variation. Process variation may possibly
—co  Gmaxfl j=itl affect the shape off; slightly. However, as we will see, intro-
—vi(wor 4+ ¢:)]dr  (3) ducing a small variation i, as well ax; does not alter the
system’s synchronization ability.

or equivalently As in (6), computingH; requiresl” andv; — v;. AlthoughI’

doi(t)  T(wolt —ta) + ¢i(t — ta)) has been defined by the maximum charge displacemgnt,
dt Gmax R the exact value of,,.x iS not necessarily needed for computing
H;. Instead ofy,,,.., we considered a fixed charge displacement
N t—1 (t—t
. j;l[vl (ol @)+ i @) 7. (<gmax that corresponds to the pulse size) and systematically
— vi(wolt — ta) + ¢t — t2))] @) obtained the phase shift for different cases as in Fig. 6 (later). It

should be noted that the time delgyof the impulse (the phase
delay ) vanishes in (6) and (7). Howevdr{¢) andwv; ;(¢)
contain information about the effects of the time delay, and the
shape ofH; reflects the signal delay and distortion.

which implies that a closed relationship holds betweégmand
$;. By settingwoty + ¢; ;(t) — ¢i ;(t — ta) = bq, We obtain

deps (1) _ I'(wot + ¢:i(t) — ) Z [vj(wot + ¢;(t) — 1ba)

dt (.ZInaXR j=7:|:1
—vi(wot + ¢i(t) — a)l- (5) In the 1-D linear SDO, the interconnecting wiRE chain)
N . has a symmetric bidirectional nature, and the curr&ntsfrom
; =R —
In (.5)’ i(r)(=R™(v; —vi)) is small (less than a few m'_A‘)’ andboth (left and right) adjacent cells do not interact with each
wo is very large (several hundred megahertz—1 GHz); the t|m¢t=h . : .
. : L other. Thus, for this particular case, the phase equation (7) takes
evolution of¢; is much slower than that afyt. This situation e followina form:
leads naturally to an application of the averaging method [g] g '
[well-known in the ordinary differential (ODE) theory], where bi = + H(dig1 — &)+ H(i1 — ¢5). (8)
the slow motion ofp; can be reduced by integratiffwor + As sh in Eig. 4. the f o st v d q .
bi =Pa) i1 [V (WoT + b —a) —vi(woT + di —Pa)] With S Stholwz\l'lgﬂ lg-h}} Oe _or(r)nho ldsfrong y e_penl S (;E V;’;:e
one cycle ofvy7. This integration can be handled by using thi€N9th{. Although H(0) = 0 holds for any wire length (the

(numerically obtained) Fourier seriesof¢) andwv(¢), which In-phase state always ex_ists, see Appendix 1), the slopk @y
leads to the following form: can be positive or negative. For wire lengths less than 40 mm,

this slope is positive, and for longer casés= 60,80 mm),
j{ (wor 4 ¢ — 1a) it becomes negative and another zero crossing point appears as
(ImaxR shown in Flg 4.

A. Synchronization Limit of the SDO

> [vj(wor + ¢ — tha)

j=i%l ) . .
o o In Mizuno and Ishibashi’s study [3], the global effect \gf
vilwor + ¢i = a)]dr variation (as well as supply voltage variation) at one of the os-
= Qi + Hi(¢iv1 — ¢ir i1 — ¢i) ) cillators is numerically investigated, where it is observed that

4In [4], this time delay is assumed to be 0, because the impulse is appl_mfa static SkeV_V is proportional fa, de_Viation- Th? static skew
directly to the oscillator. is the phase difference between oscillators and it corresponds to
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dit1 — ¢i (=¢; — ¢pi—1) In (8). Also, the natural frequency de- 1" cell i cell 1" cell
viation ©2; is proportional toV; deviation. From (8), it is clear
that the static skew; 1 — ¢; is proportional td2; if the oscilla-

tors are mutually synchronizedg; = 0). Thus, the presented
theory is consistent to the observation in [3] regarding the effect
of V; deviation.

If we consider a 1-D circular network of SDO, a synchronized
state with uniform phase differencesy, — ¢; = ¢, (i =
1,...,N)with N¢, = m - 2z (m: integer) is possible. For
such a solution of (7), linear stability theory proves that for pos-
itive H'(+¢,) the synchronized state is stable and for negative \

H'(+¢,) it becomes unstable (see Appendix Il). For example, R 0 (@ (b)
let's consider circular SDOs with five or six (an odd or even

number of) oscillators. Numerical simulations (with HSPICE}i9: 5. Corfe dC_ifCUit of ﬁIPG-"keThCideUit igcorporgtifr}g the aﬁyrlﬂmetrig .
. . teraction of adjacent oscillators. The dotted area defines a cell. Instead o
show that, for < 40 mm, Only m-phase SynChromzed Stateg] long wire between oscillators, resistr is inserted. In the steady state,

(¢ = 0) are observed for both cases. This can be explainggjacent nodes show rectangular voltage waveforms with phase difference of
theoretically as follows: fop, = 0, H(()) =0, H/(()) > 0,and T-— 7r‘/A/'f radian. Because the oscillation frequency is nearly the same as that
Q; = Oimplies that this state is stable. On the other hand, foﬂr%gess”zg;eaﬂa”(c&“p'ed) RO, a precise delaygf../M can be obtained at
(formal) solution withp, # 0, a certain amount of the frequency
deviations; is required because = Q; + H(¢,) + H(—¢,) o _
must be satisfied. Howeve®, is restricted to some small range The above predictions guarantee the correct function of the
around2; = 0 because in ROs the oscillation period is prooPO forl < I, thatis, there is a unique, stable, in-phase state.
portional to the gate delay of each invertor and this cannot hB€ theory also predicts that a limit of the SDO appears .at
altered much by the weak interaction duete). Then, such a Beyond.,, thereis no stable in-phase state, which m_eansthat the
phase-lagged solution is not realized. Thus, the in-phase solut®JA© no longer provides correct synchronous clocking for LSls.
with ¢, = 0is the only stable state for the shorter wire case. ~ Althoughwe have not proved thatmatches halfthe wavelength
In contrast to the shorter wire case, for larber 40 mm), only _ofthe clock signal onthe wire, we d_o have numerical ey|dence for
phase-lagged synchronized statgs = ) are observed numer- it. Therefore, for the SDO to fupctlon correc’gly, the wire length
ically for the case oN = 6. Although the in-phase state is pos_.should be shorte_r than a certain length, which is _thought to be
sible ((0) = 0, as shown in Fig. 4), the slope &F(0) is nega- |nversgly_proport|onal to the clock frequency, that is, there is an
tive and this implies that the in-phase state is unstable and cari#fer limiton the operating frequency in the SDO.
berealized. Onthe otherhand, the phase-lagged (anti-phase) state o ]
with ¢, =  isrealized for the case of = 6, becausé{’(+¢,) B Novel Circuit Design
are positive, and{( - ) has a zero crossing point close#o = = Having obtained a method for reducing the interacting oscil-
andH(¢,) + H(—¢,) becomes small (as observed in the cadators into a set of equations in terms of the phases, it is now
of 80 mm in Fig. 4). For the case &f = 5, the phase-lagged possible to design and analyze circuits based on “the equation.”
state withpy ~ 7 does not exist, and neither the in-phase nor th&e consider here a precise delay generating circuit as a practical
phase-lagged synchronized states are observed. example. In a single RO, the delay resolution (minimum phase
As we have observed, there is a critical lenftif~40 mm) difference between two voltage signals on the nodes) is bounded
between the stable in-phase state and the phase-lagged dtgta,single gate delaf=7,.:.). However, if multiple(A/) ROs
at which H'(0) = 0 holds. This critical length is unpracti- are coupled in a certain manner, the delay resolution can be of
cally large for the CMOS parameters we considered. Howevéte order ofrg,:. /M . In the previous (and first) circuit proposed
it scales down as the CMOS gates are scaled. As shown in Figid?, this purpose, special 2-input, 1-output buffers (instead of
I, isaround 14 mm for 0.2¢n CMOS parameters (with an op-usual CMOS inverters) were developed, and the resulting circuit
erating frequency of around 600 MHz), where the valug. @ had two-dimenisonal network topology with many interconnec-
in the “practical” range. Although we have chosen a particuléions [8]. Their circuit seems beautiful and somewhat ingenious.
parameter set for the computer-assisted derivation of the phik®evever, a question arises: if certain good oscillators (in partic-
models, the predicted in-phase to phase-lagged state transiti@ar, ones having noise immunity) are available, is it not possible
does not depend on a particular set of parameters. Our thetmachieve the function by simply interconnecting those oscilla-
thus agrees with Mizuno and Ishibashi’s results [3]. Althougtors (instead of developing a special buffer)?
the shape of{( -) gradually approaches a sinusoidal wave as Based on “the equation” discussed above and an analogy to the
! becomes larger, the position of the(on these curves) is ob- central pattern generator (CPG) circuit[11], asimplerand general
served to gradually shift to the right &dbecomes larger. This formulation of circuits is possible, where the network topology is
can be understood by the fact th&t- ) andw; ; reflect the in- 1-D (fewer interconnections), and each oscillator can be any type
ternal delay of the cell and this delay is mapped to the phaskoscillator (in practice, noise immunity is essential). As a real-
shift of H(-). Thus, the emergence of the phase-lagged syimation of the above idea, we consider here the simplest case, i.e.,
chronized state can be explained by the deformatioH 0f), ROs and one inverter on the wire (Fig. 5). The cell can be defined
and the underlying mechanism of a sharp transitiofy dbut as in Fig. 5. For this choice of the cell, we have checked that the
still supposed to be continuous) is clarified. voltage waveforms atnodes (1), (a), and (r) in the isolated cell (see
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Fig. 6. Numerical data for cell shown in the inset. (a) Phase shifts due to
impulsive perturbations; the injection from the left nqde ) and the right node

4
(+) are measured separately. (b) The impulse sensiiility ) - ¢.) for both 200 Time (ns) 290
directions; impulse from the left node—) and right nodd < ). The impulse

height is 50 mA, and the ch displ ts about 0.5 pC. ) S . . . -
eight s SUmA, and the charge displacemgnts abou P Fig. 8. Oscillation waveforms in the CPG-like circuit (Fig. 5), having five

. L . . _coupled (15-stage) ROs.
Fig.5) coincidewiththoseinthe fullsystem (whenthe cellsarein-

terconnected). Thus, this choice of celliswell defined. In Contr%tocol used in the above SDO case (Fig. 8), including the sim-
to the symmetric interaction in the SDO, in this CPG-like Circu"iulation in a slightly noisy environment.

theinteractionis highly asymmetric; the LRR and ISF mustbe de-
fined separately forthe impulsesfromtheleftandrightdirections.

. . . V. CONCLUSION
Then, the phase equationfor this system takes the following form:

dé; This study has presented a computer-aided phase reduction
y L= Qi+ Hier(im1 — @) + Hiige (i1 — ¢i), method for coupled oscillators; the SDO. The method is based
t i—1 N. (9) on the fact that the oscillators interact weakly in a practical

situation on an LSl chip, and on the use of the ISF (or PRC) from
In (9), unlike (8) for the SDO, the effedfi.s (- ) from the left experimental data. Explicit dynamical phase equations for ROs
(¢ — 1)th cell dominates and,i1.:( - ) from the right ¢ + 1th) and coupled ROs can be derived in the first place, which enables
cell is negligible, because the phase shift is negligible for atiyeoretical insights into their synchronization ability as well as
timing of the perturbation from the node (tHi(-) has synchronizationlimit. The presented phase reduction has general
multi-modal characteristics and there are two zero crossiagplicability, and this benefits an“equation-based” design of cou-

points¢, (=¢;—1 — ¢;) as shown in Fig. 7; one is very closepled oscillator systems that have a simple and general structure.
to « (this is analytically obtained in Appendix I). At this point,

the slopeH’( ) is negative, and the other one is closento APPENDIX |
and¢, < wand hereH'()is positive andp, can be close to ANALYTICAL DESCRIPTION OF THEPHASE
7 — /N foracertainV. Thisimpliestha#ep (7 — 7/N) ~ 0 COMPARISON CHARACTERISTICS H ( - )

in (9), sothe phase-lagged state= = — « /N isthe only stable . . . .
synchronized state (see Appendix Il). Numerical simulation of This appendix shows an analytical approach to describe some

this system verifies this prediction (as shown in Fig. 8 for irroperties offf (- ): a zero crossing point @# ( - ) and the slope
N = 5case). of H(-) at that poaint.

. il mice From the definition (6), the phase comparison characteristics
Thus, a difference between our CPG-like circuit and the SD@G(% — ¢:) can be determined hy , andT". For the 1-D SDO,

can be clarified from their phase equations (8) and (9). For t > waveforms of: andw. are exactly the same and can be
CPG-like circuitin Fig. 5, the phase-lagged state (uniform phase ! i y

difference ofr /M radian) is the only stable state, as opposed gV
the in-phase state (no phase difference) for the SDO. This pre- v (1) = Z[a’“ cos kb; ; + by, sin kb; ;] (10)
diction was verified using HSPICE under the same simulation 7 7 7

en by

k=0
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and the corresponding ISF becomes where X denotes the time derivative of and it is tan-
I($;) = cos kb + By, sin k6 11 ger_mal to X. If we consider the situation where th_e state
Q2 ’;[ak cos kfi + P sin k6] (11) variables are node voltages and an impulse is applied to the

ith node, thenX, AX, and X are respectively given a& =

with 6; ; = wor + &5 ; — 1q. Then,H(-) is obtained as [, v@ ™) AX = [0,...,0,Av®),0,...,0],
H(p; — ¢i) ~ (1/2) > [~(anon + biB) + (mar + bxfr)  andX = X' = (2a/T)[o®’,.. 0@, o], where X’
k=0 denotes the derivative with respect to phasé&hen, the phase
x cosk(¢; — ¢i) + (—arfr + brou) shift (16) becomes
x sink(¢p; — ¢:)]- (12) ‘ O
AP = Av(z)—Q. a7)

From (12), we haved (0) = (1/2) 3", _o[—(arow + bxSr) + s (W‘)’)
(apa + b)) = 0, which explains why all phase comparison i=1

characteristicdI( - ) in Fig. 4 (obtained from the experimentalBy the definition of the ISF in (L)y@’/ 7 (v®")? corre-
data of the ISFs) pass tli. sponds td(¢). =

_For the CPG-like circuit, the waveforms of ; are slightly ', o, particular examples (1-D SDO and CPG-like circuit),
different and the phase shiftdue to the inverter should be taken, , (i) corresponds to the interaction of the adjacent cells;

into account as follows: Av® = ol — {1t should be noted that the cell in these

vi(7) =Y _[ax cos kb; + by, sin k6] (13) cases is spatially extended and the denomingifr, (v’
k=0 contains information about the signal delay due to the spatially
and extended interconnections.
vi(r) =Y _[ax cos kb, + by sin k6] (14)  If the denominator 37, (v')2 is a constant, then
k= I() ~ v/ (¢:) holds, SOH (; — i) ~ (1/2) 3 _ol(as +
With 6; = wor + i — 9a, 0; = wor + ¢; + 7 — tba. Then we b, ")k sink(¢; — ¢:)] andH'(0) > 0 is obtained. This implies
have that the phase comparison characteristics are an odd function

- R and do not match the experimental data shown in Fig. 4.
H(p;— i) ~ (1/2) Y _[—(ancn + beS) + @ik + 0Br)  Here, the above insight that ", (v®")? reflects the spatially

k=0 N extended nature of the cell is essential to explain the charac-
x cosk(¢; — @i + ) + (—arfr + brow) teristics of H(-). This insight and (12) predict that the slope
x sin k(¢; — ¢; + 7)) (15) H'(0) is positive for shorter wire lengths (whefe!_, (v(®')2

. ~ can be considered to be nearly a constantlaw) ~ v;'(¢;))
If ax = @ andbx = by, thenH(w) = 0 holds. However, as and H'(0) can be negative for longer wire lengths because
ak _andak,an(_jbk e_mdbk are slightly dlffere_nt, the zero crossngLl(U(i)’)Q reflects a larger signal delay in the cell and
point of (15) is slightly shifted fromr. This explains why the geyjiates from a constant. This prediction is consistent with the
zero crossing point in the experimental data is close,tas experimental data in Fig. 4 whef# (0) changes from positive

shown in Fig. 7. o _ _to negative as the wire lengttbecomes larger.
Now we consider the situation where a “cell” (defined in
Section Ill) is perturbed by an external impulse. For this cell, APPENDIX Il

a limit cycle)f is defined in the (high-dimensional) state space ] o ] -
and the external impulse is given by a perturbation veriar This appendix shows a criterion for the linear stability of the

at some point of the limit cyclé?. In the neighborhood ok, mutually synchronized states. We assume a synchronized state
a local coordinate is given by the tangential directiofkoaind  #i+1 = ¢ = o (N¢, = m - 2) and introduce a small pertur-

the “isochrone: which defines the phasef the oscillation. On Pationé; to ¢; such thap; = ¢; + ;. Then, (8) becomes

this coordinate, the perturbatiah.X' is decomposed into two . | 5, — ), + H(iv1 — 1) + H(diy — i)

elements: one is tangential #0 and the remaining is tangential — Q4 H(bo) + H(—60) + H'(6) (811 — 8)

to the isochrone. In the present situation we consider, the limit U ) ° ? ) o/\Titl T %
cycle is strongly attractive and the remaining element dies out + H'(=¢o)(6i—1 — 6;) + O(57). (18)
immediately (after a signal delay in the cell). Itis noted that After removing the synchronized part in (18), we obtain the
fche tangential d_|rect|on ok is _not necessarily orth_ogona_l to thgjnear ODE fors; as
isochrone. (A simple model is analyzed to consider this nature

in [15].) However, if this orthogonality is satisfied (at least ap b1 -1 s 0 - 0 r 61
proximately), a great deal of simplification can be made in thje : r -1 s - 0 0 :
expression ofd (- ). Here we will consider such a hypothetical 6; | =(a+5»){ 0 = -1 s --- 0 8;
situation and see what can be concluded. . T :

If the qrthogor_‘lahty is assumed, the phase shift (due to 6: ) s 0 - 0 ¢ -1 6. ,
AX) is simply given by N (1\19)

Ap= 2 (A% 2 (16) inwhichr = a/(a+b),s = b/(a +b),a = H'(¢,), andb =
H'(—¢,). The matrix in (19) is known as a circulant matrix and



1278

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 9, SEPTEMBER 2002

its eigenvalued; and eigenvectors, can be explicitly obtained [15] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscil-

as

Then,Re{Ax} < 0 holds for anya, b, andk, and the stability
of the synchronized states can be determinettbyb) in (19).
For the in-phase state witH’(0) > 0, (a + b) = 2H'(0) > 0
andRe{\;} < 0implies it is stable, and foH'(0) < 0Oitis
unstable. Also, if the phase-lagged synchronized state satis

lators: A unifying theory and numerical methods for characterization,”
IEEE Trans. Circuits Syst, vol. 47, pp. 655-674, May 2000.
[16] C. Kurrer, “Synchronization and desynchronization of weakly coupled

A = rexp(2mik/N) + sexp(—2mik/N) — 1 oscillators,”Phys. Rev. Evol. 56, pp. 3799-3802, Oct. 1997.
er = [exp(—2mtk/N),. .., exp(—2mikj/N),...,
exp(—2mikN/N)], kE=1,...,N. (20)
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