
NOLTA, IEICE

Paper

A simplistic dynamic circuit analogue of
adaptive transport networks in true slime
mold

Hisa-Aki Tanaka 1 ,2a), Kazuki Nakada 2 , Yuta Kondo 1,

Tomoyuki Morikawa 1, and Isao Nishikawa 2

1 Graduate School of Information Systems,

The University of Electro-Communications

1-5-1 Chofugaoka, Chofu 182-8585, Japan

2 Graduate School of Informatics and Engineering,

The University of Electro-Communications

1-5-1 Chofugaoka, Chofu 182-8585, Japan

a) htanaka@uec.ac.jp

Received June 6, 2015; Revised October 28, 2015; Published April 1, 2016

Abstract: This paper presents a simplistic dynamic circuit analogue for an adaptive trans-
port network model in true slime mold by Tero et al. This circuit analogue model is derived
from Tero’s model through nontrivial simplification under certain assumptions, and it realizes
less computational complexity through a reduction of the number of variables. Despite of
its simplicity, systematic simulations confirm that the shortest path search task is efficiently
accomplished with this model; (i) the shortest path is always identified, for various random
networks; (ii) if there are multiple, competing shortest paths in the network, they are simulta-
neously identified; and (iii) for random deletions of a link in the shortest path, a new shortest
path is quickly identified accordingly. The model proposed here is easily implemented on the
circuit simulator SPICE for instance, and hence the path search time will be further reduced
with certain numerical devices including automatic adaptive numerical integration schemes as
well as an acceleration method proposed in the end of the paper.

Key Words: biology-inspired algorithm, shortest path search methods, nonlinear resistive
circuits

1. Introduction
A pioneering study by Tero et al. [1, 2] has recently uncovered a new shortest path search method,
motivated by observation of the amoeba-like organism (plasmodium) of the true slime mold Physarum
polycephalum [3] (hereafter abbreviated to Physarum). They showed that their method (i.e., Tero’s
model) identifies the shortest path and, according to systematic numerical simulations and analysis,
this ability is robust to temporal changes in the network topology [1, 2]. Later on, some of their results

86

Nonlinear Theory and Its Applications, IEICE, vol. 7, no. 2, pp. 86–94 c©IEICE 2016 DOI: 10.1587/nolta.7.86

are mathematically proved by Miyaji and Ohnishi [4], where a kind of ‘local’ Lyapunov function is
cleverly constructed for planar graphs. This result in [4] enabled further analytical investigations. For
instance, convergence to shortest paths are proved for all graphs [5], and for a time-discretization of
the Tero’s model [6].

Incidentally, Aono’s group has explored a more difficult combinatorial optimization; the traveling
salesman problem (TSP), using Physarum [7]. Their systematic experiments showed that Physarum
finds a high quality solution for the (8-city) TSP with a high probability. Thus, Physarum-inspired
algorithms and their physical implementation are expected to explore new, primitive but sophisticated
computing machinery.

In this paper, we propose a nontrivial circuit analogue of Tero’s model [1, 2], which is directly
implemented on circuit simulators such as SPICE. From systematic investigations of this circuit, we
numerically verify the following patterns for all the instances considered here1: (i) the shortest path
is always identified, (ii) multiple, competing shortest paths are simultaneously identified, and (iii) a
new shortest path is identified immediately after a link is lost in the shortest path. Also, the required
times for this shortest path search method are systematically investigated. As far as we know, such
properties by a simplistic shortest path search algorithm have never been reported before.

Some results in this paper were presented in NOLTA’07 [8]. The present paper carefully reexamines
all the simulations and further investigates the above item (iii) of the presented method, and hence
it adds new and original contents. The remainder of this paper is organized as follows. In Section 2,
we briefly review the mathematical model by Tero et al. [1, 2] and construct a circuit analogue for it.
In Section 3 we investigate the path search time and the path search process in the proposed circuits.
Then, the discussion and conclusions are presented in Section 4.

2. Mathematical model for transport network in Physarum

polycephalum and its dynamic circuit analogue
Systematic experiments demonstrate that adaptive transport networks in the true slime mold
Physarum have a shortest path search ability [3]. Motivated by this observation, Tero et al. [1,
2] constructed a simple mathematical model for adaptive transport networks in Physarum (Tero’s
model, below). They numerically and analytically investigated how their model reaches the short-
est path. In this section, we review Tero’s model and construct a nontrivial circuit analogue for it.
Implementation of this circuit on SPICE is also considered.

2.1 Mathematical model for transport networks in Physarum
We start by reviewing the mathematical model for adaptive transport networks in Physarum per [1,
2]. This living network initially contains numerous thin ‘tubes’ filled with nutrient-transporting liquid
that sense and respond to the environment. If we set two ‘foods’ on N1 and N2 in the network, as
shown in Fig. 1(a), Physarum tends to connect N1 and N2 with a shortest path of tubes by adaptively
growing (or degrading) the thickness of these tubes [3]. The dynamics of network adaptation in
Physarum [1, 2] is modeled by experimental results and physiological insights at the molecular level

Fig. 1. Network architecture in (a) adaptive transport networks [1, 2], and
(b) time-dependent, nonlinear resistive circuits in the proposed method.

1We have used 60 instances of randomly generated network with various sizes for shortest path search. See Section 3.1
for more details.

87

(for detail, see [2]), which are summarized as follows.
First, the tube connecting nodes Ni and Nj are denoted as Mij . If there are multiple tubes

connecting the same pair of nodes, we distinguish these tubes as M1
ij and M2

ij , as shown in Fig. 1(a).
The total numbers of tubes and nodes are M and N , respectively. Then we consider the flux Qij ,
which passes through Mij from Ni to Nj . As Poiseuille flow is assumed in the tube, the flux Qij(t)
is given by

Qij(t) =
Dij(t)
Lij

[pi(t) − pj(t)], (1)

where pi(t) represents the pressure at Ni, Lij represents the length of Mij , and Dij(t) is the conduc-
tivity of Mij . As the total amount of liquid is conserved in the network, Kirchhoff’s law holds at each
node except at nodes with ‘foods’:

N∑
i=1

Qij = 0, (j �= 1, 2). (2)

Assuming N1 and N2 act respectively as the source and the sink, the following two equations hold:

N∑
i=1

Qi1 + I0 = 0,
N∑

i=1

Qi2 − I0 = 0, (3)

where I0 is the flux from the source node and Q11 and Q22 are assumed to be 0. In accordance with
Refs. [1, 2], we set this I0 to be a positive constant.

To model the adaptation of tubular thickness to the flux Qij , the conductivity Dij is assumed to
change in time as

d

dt
Dij = f(|Qij |) − rDij , (4)

where f(Q) is a certain increasing function with f(0) = 0, and r is a positive constant. From this
equation, the conductivity Dij decreases to 0 by itself, but it increases when a certain amount of flux
Qij is retained in the tube Mij . For simplicity, we assume the function f as f(|Qij |) = α|Qij |, where
α is a positive constant. Then, the equation for Dij is simplified as

d

dt
Dij = α|Qij | − rDij . (5)

Thus, Dij(t), Qij(t), pi(t), and pj(t) at time t are determined by Eqs. (1), (2), (3), and (5). More
precisely, Eqs. (1), (2), and (3) contain M + N linear equations with M + N variables (Qij and pi)
and Eq. (5) contains M nonlinear equations with M variables (Dij), which are well-defined. Then,
Dij(t) of l.h.s. in Eq. (5), a function of Dij(t), Qij(t), and pi(t), is obtained by Eq. (5).

Note that as pi appears in the form of pi −pj in Eq. (1), there remains an arbitrariness in the value
of pi. To remove this arbitrariness, we assume p2(t) ≡ 0 naturally. This assumption is reasonable
because the pressure p2 always becomes 0 at the sink node N2, as shown in the liquid transport
network of Fig. 1(a). In addition, α and r in Eq. (5) are set to 1 without loss of generality after
rescaling pi and t.

2.2 Dynamic circuit analogue of the network
A circuit analogue for Tero’s model is constructed as in Fig. 1(b). First, we regard the flux Qij as
the current Iij , the pressure pi as the voltage Vi, and D−1

ij as the unit resistance Rij . The change of
variables is: pi ≡ Vi, D−1

ij ≡ Rij = Vij/Iij , and Qij = (Dij/Lij)Vij = Iij/Lij , in which Vij ≡ Vi − Vj .
Then, the equivalent equations to (1), (2), (3), and (5) are obtained for Iij(t), Vij(t), and Lij . The
circuit analogue of Eqs. (1), (2), and (3) is clear and trivial, since these equations represent Ohm’s law
and Kirchhoff’s law. On the contrary, the circuit analogue of Eq. (5) is nontrivial, because it is not
clear how to implement an Eq. (5) analogue with simple circuit elements. However, if we assume that
the time evolution of Vij is relatively slow, compared with that of Iij , a reduction becomes possible
as follows.

88

First, from Eqs. (1) and (5), the following equation is directly obtained after setting α and r to
unity:

Lij
d

dt

(
Iij

Vij

)
= |Iij | − Lij

Iij

Vij
, (6)

where Lij is a positive constant. If Vij evolves much slower than Iij (i.e., Assumption 1; the validity
of this assumption is numerically verified later in Section 3.2), then the following is valid for a certain
(infinitesimally) short time span,

d

dt
Iij(t) =

Vij

Lij
|Iij(t)| − Iij(t), (7)

where Vij is safely approximated as a constant parameter and its values is determined with Iij(t) from
Ohm’s law and Kirchhoff’s law (i.e., Eqs. (1), (2), and (3)) at each time span. Then, the solution of
Iij is given by

Iij(t) = Iij(0) exp
[(Vij

Lij
− 1

)
t
]

> 0, (8)

or
Iij(t) = Iij(0) exp

[(−Vij

Lij
− 1

)
t
]

< 0, (9)

respectively for a positive or negative initial value of Iij(0). Now the variable Dij(t) in Eq. (5) is
eliminated, and Eq. (5) is reduced to Eqs. (8) and (9) via Eq. (6). This reduction makes our path
search process computationally more effective, since the number of variables (Iij and Vi) is now M+N .
This M +N is reduced from the original 2M +N variables (Qij , Dij , and pi), and the reduced number
M (= 2M + N − M − N) is often huge when the links are dense.

Here we note, in identifying the unknown shortest path in the network, the final direction of the
current on each link is not given in advance. This requires some modifications for Eqs. (8) and (9).
A simple but nontrivial construction is obtained by superimposing both currents Eqs. (8) and (9):

Iij = I0 exp
[(Vij

Lij
− 1

)
t
]
− I0 exp

[(−Vij

Lij
− 1

)
t
]
, (10)

in which I0 and −I0 respectively correspond to Iij(0) in Eqs. (8) and (9). In this modification, both
directions of currents are implicitly assumed in each link, which tolerates the uncertainty of the final
currents directions. In conjunction with this uncertainty, Iij in Eq. (10) becomes 0 at t = 0 since
we have set Iij(0) in Eqs. (8) and (9) as I0 and −I0 respectively. Therefore, this time-dependent,
nonlinear voltage-dependent current source Iij is well-defined for t ≥ 0, and can be stably simulated.
The identified shortest path is characterized as follows. In Eq. (10), Iij converges to I0 or −I0 if and
only if Vij converges to Lij or −Lij respectively2, and otherwise Iij dies out to 0. This implies all
|Iij | → I0 on the shortest path, which is consistent to Eqs. (2), (3) (Kirchhoff’s law) and it is verified
in all simulations in this study.

Even though the above construction is somewhat heuristic, the shortest paths (and the second
shortest paths) for all 60 cases given in Section 3.1 are successfully obtained in this circuit, with
SPICE3. This result and the underlying mechanism will be investigated in detail in the next section.

3. Path search process and elapsed times

Thus far, we have derived a dynamic circuit analogue from Tero’s model [1, 2]. In simulating this
circuit we set a constant current source (∼ 10 A) between the nodes N1 and N2, and we connect a
large resistance R (∼ 100 kΩ) in parallel with the nonlinear current sources of Eq. (10), as shown
in Fig. 1(b). The reason why this resistance R is introduced is understood as follows. Firstly, at
t = 0 there is no current on every link because Iij becomes 0 at t = 0. However, as we assumed a

2In Eq. (10) the speed of convergence in Vij is fast enough, compared with the increasing speed of t, which is not yet
proved but verified in all simulations in this study.

3An illustrative example on SPICE (netlist) is available from the following site: http://synchro3.ee.uec.ac.jp/
netlist2015.pdf, which generates the data shown in Fig. 5(a).

89

constant current source between N1 and N2, there must be a bypass (a constant resistance) in parallel.
Secondly, it is desirable that all the current should pass through only the shortest path eventually.
So this constant resistance should be as large as possible. The most widely used circuit simulator
SPICE is used for all simulations in this study, as its numerical results are reliable and they can be
easily traced by many researchers.

3.1 Elapsed times for shortest path search
As we shall see in Section 3.2, typical path search processes consist of two stages: an early fast-evolving
transient process and a final process slowly converging to an shortest path (which is shown later in
Fig. 3(a) for a typical case). Thus, the shortest path is obtained immediately after this fast evolving
stage in practice, which is judged by changing rates of the currents being less than a threshold (∼ 1.0
×10−3 A/s for instance).

To investigate the averaged elapsed times required for the shortest path search, we have systemat-
ically generated random networks with N nodes and M (= 4N) links for N = 25, 26, 27, 28, 29, and
210, respectively4. For each N , 10 networks are randomly generated and our shortest path search
method is applied to each network. Also, Dijkstra’s algorithm for finding the shortest path [10] is
applied to the same networks to verify the advantage and the correctness of our path search results.

Figure 2 shows the elapsed times for our proposed method, where a comparison is made among
elapsed times for simulations based on Dijkstra’s algorithm (plotted with �) on a PC (Dell Dimension
8300, Pentium 4 3.2 GHz CPU), elapsed times on (virtual) circuits (�) on the SPICE simulator, and
their averages (×). By comparing these two elapsed times, we can clarify the essential physics behind
this path search process, which is not influenced by simulation details. Namely, we observe the
following patterns;

Fig. 2. Elapsed times for the proposed method. � (blue) and � (red) respec-
tively represent the elapsed time for numerical simulations on PC (Simulation
Time) and the time for virtual circuits on the SPICE simulator (Circuit Time).
× represents the average of both times for a given number of nodes N . Data
sets ‘a,’ ‘b,’ ‘c,’ ‘d,’ and ‘e’ are exceptional slowly converging cases, as explained
in the main text.

(i) for all cases except for the five exceptional slowly converging cases ‘a,’ ‘b,’ ‘c,’ ‘d,’ and ‘e,’ the
circuit finds the shortest path within around 100 s, irrespective of the number of nodes N , and

(ii) although the simulation times clearly show an increasing tendency (partly reflecting the time
complexity of the numerical integration in the simulator), the average elapsed times (×) for the circuit
do not apparently show such a tendency with respect to N . Nevertheless, the exceptional cases ‘a,’
‘b,’ ‘c,’ ‘d,’ and ‘e’ deviate from the averaged circuit time significantly.

3.2 Shortest path search process
To investigate the mechanism behind the above observations (i) and (ii), we have numerically analyzed
the time courses of path search processes in detail, by setting I0 in Eq. (10) to 10 A. Figures 3(a)

4Those random networks are downloaded from the DIMACS challenge site [9], which is widely used by researchers of
combinatorial algorithms and its validity has been tested by them.

90

Fig. 3. Two typical path search processes in the proposed method. Horizon-
tal axes (Circuit Time) represent the elapsed time in the circuits. I0 is set to
10 A. (a) Fast converging case. ◦ and � represent Iij(t) for the shortest path
and the other paths respectively. (b) Slowly converging case. ◦, �, and � re-
spectively represent Iij(t) for the shortest path, the second shortest path, and
the other paths. (c) Time evolution of the shortest path solution Vij (red) and
Iij (black) for the fast converging case (a). (d) Time evolution of the shortest
path solution Vij (red) and Iij (black) for the slowly converging case (b). [Note
that right after t = 0 some Vij become too large to be included in Figs. 3(c),
(d), since all current (10 A) passes through the bypass resistance R (100 kΩ).]

and (b) respectively shows two typical examples from a fast converging case and a slowly converging
case (i.e., the data point ‘a’ in Fig. 2). In both figures, we plotted all the currents in the network,
but they quickly coalesced into some groups.

As we observe in Fig. 3(a), in a typical instance of N = 26 = 64, the shortest path (denoted by ◦)
can be already identified at around t = 20 s, while other paths (�) quickly disappear, namely their
associated currents go to 0.

In contrast to such fast converging cases, we have investigated slowly converging cases ‘a,’ ‘b,’ ‘c,’
‘d,’ and ‘e’ in Fig. 2, as follows. For all these five cases, we verified that two groups of solutions are
initially competing in the path search process. As shown in Fig. 3(b), for the case ‘a’ in Fig. 2, two
groups of solutions (◦ and �) coexist for a certain period, and it is conjectured that the appearance
of two such competing groups results in the slow convergence to the shortest path since the second
shortest path, once formed at an early stage of the path search process, requires certain time to be
removed. Actually, it is verified that these two groups of solutions correspond to the shortest and
the second shortest paths in the network5. Figures 4(a), (b), (c), (d), and (e) shows a summary of
these network structures showing the shortest and the second shortest paths for the cases ‘a,’ ‘b,’
‘c,’ ‘d,’ and ‘e,’ respectively, where l denotes the distance between nodes. Note these two competing
paths have path lengths that are quite close to each other. From the perspective of application, the
above observation suggests some advantage of the proposed method (and possibly of Tero’s model [1,
2] as well) over the conventional combinatorial algorithms; competing multiple paths are identified
simultaneously at an early stage of the path search process.

Now, we numerically verify the validity of Assumption 1 in Section 2.2 in all simulations for shortest
paths here. In Assumption 1, we have expected Vij evolves slower than Iij , and it is partly true as
shown in the typical cases of Figs. 3(c), (d). As observed in Figs. 3(c), (d), this assumption is violated

5By using Dijkstra’s algorithm [10], we have verified that these paths are the shortest and the second shortest paths,
respectively.

91

Fig. 4. Network structures for the cases (a), (b), (c), (d), and (e) with two
competing shortest paths.

at a very early short span of the fast evolving process (0 ≤ t < 1 s). However, we note this assumption
is satisfied for all time after the above very early stage. This implies that the system always satisfies
Assumption 1 if we regard the initial conditions of Vij and Iij as their values at t = 1 s for instance.
And, this observation explains the situation how the derivation of Eqs. (8), (9) (and hence Eq. (10))
is validated, although the global convergence to the shortest path from any initial conditions is not
clear from this argument.

3.3 Recovering process after random deletions of a link in the network
In Refs. [1, 2], Tero et al. showed that a new shortest path is quickly identified after random deletions
of a link in the network. To verify that this ability is retained in our path search method, we have
investigated the recovering process after random deletions of a link in the shortest path. Figures 5(a)
and 6(a) respectively show two typical examples of the path search process for a random deletion
of such a link at t = 100 s for instance, after the fast converging process shown in Fig. 3. In these
examples, the shortest path (◦) is already identified until t = 100 s, and this path disappears right
after the deletion of a link on the shortest path. On the other hand, the new shortest path (�;
verified with Dijkstra’s algorithm) emerges immediately after the deletion of a link in the shortest
path6. Although here we only show the examples of N = 25 and N = 26 in Figs. 5 and 6 due to
space limitation, the same pattern is observed in a total of all 60 instances for networks mentioned
in Section 3.1. Thus, we expect that the proposed method can adapt quickly to a new shortest path,
suggesting that the proposed method has certain robustness to temporal changes in the network, i.e.,
resilient path finding ability, at least numerically.

Fig. 5. A typical example with network size N = 25 = 32. START and
GOAL represent the source node and the sink node, respectively. (a) Emer-
gence of the new shortest path (i.e., the second shortest path) after the deletion
of a link at t = 100 s. [Note that all currents are 0 at t = 0, although it is
difficult to recognize this from the graph due to their fast movement at the ini-
tial moment.] (b) The shortest path (blue) and the new shortest path (green)
obtained in the network.

6In most cases where random deletions of a link do not destroy the second shortest link, this new shortest path is the
second shortest path in the original network.

92

Fig. 6. A typical example with network size N = 26 = 64. (a) Emergence
of the new shortest path after the deletion of a link at t = 100 s. [Note that
all currents are 0 at t = 0, although it is difficult to recognize this from the
graph due to their fast movement at the initial moment.] (b) The shortest path
(blue) and the new shortest path (green) in the network.

4. Discussion and conclusions

We have proposed a dynamic circuit analogue for the shortest path search method [1, 2] which shows
unique dynamical characteristics compared with the original Tero’s model [1, 2] as well as the classical
Dijkstra’s algorithm [10]. One of the interesting characteristics is that competing multiple shortest
paths (i.e., the shortest path and the second shortest path) are simultaneously identified during
the path search process. This task is known to be difficult to achieve with Dijkstra’s algorithm or
its modifications [11]. Although the circuit analogue here is somewhat heuristic and all the results
are obtained numerically, the systematic simulations thus confirm practical utility of the proposed
method, i.e., reduction of huge number of variables (i.e., number of links in the network) as well as
a nontrivial nonlinear dynamics behind the system.

The elapsed time for the numerical shortest path search process can be further shorten by making
the time step larger in the numerical integration scheme during the slow converging process in Fig. 3(a),
for instance. Also, it is worth considering to replace t in Eq. (10) with t2 by regarding this t here
as a time-dependent parameter, after the fast evolving process shown in Fig. 3(a). Although this
modification is non-rigorous, our preliminary results show that it successfully leads to the shortest
path and reduces the simulation time, suggesting one possible practical acceleration method. Such
accelerations of the proposed method is now ongoing and will be reported elsewhere.

In addition, a proof concerning why the shortest path is obtained with our method is now under
consideration. For instance, in relation to rigorous results in [4–6] and their references within, it is
worthwhile to consider if our system or Eqs. (1), (2), (3) and Eq. (10) has a Lyapunov function.
On the other hand, it is also worth investigating if the slow dynamics of the proposed system with
Eq. (10) is reduced to the original Tero’s model with Eq. (5) after the fast evolving process, by using
mathematical techniques such as the method of multiple scales.

Acknowledgments

We thank Drs. A. Tero (Kyushu Univ.), T. Saegusa, T. Nakagaki (Hokkaido Univ.), and R. Kobayashi
(Hiroshima Univ.) for stimulating discussions. We also thank Drs. T. Saito (Hosei Univ.), K.
Yamamura (Chuo Univ.), H. Asai (Shizuoka Univ.), K. Okumura (Hiroshima Inst. of Tech.), and
S. Umetani (Osaka Univ.) for helpful comments.

93

References
[1] A. Tero, R. Kobayashi, and T. Nakagaki, “Physarum solver: A biologically inspired method of

road-network navigation,” Physica A, vol. 363, pp. 115–119, 2006.
[2] A. Tero, R. Kobayashi, and T. Nakagaki, “A mathematical model for adaptive transport network

in path finding by true slime mold,” J. Theor. Biol., vol. 224, pp. 553–564, 2007.
[3] T. Nakagaki, H. Yamada, and Á. Tóth, “Intelligence: Maze-solving by an amoeboid organism,”

Nature, vol. 407, p. 470, 2000.
[4] T. Miyaji and I. Ohnishi, “Physarum can solve the shortest path problem on Riemannian surface

mathematically rigorously,” Int. J. Pure and Applied Mathematics, vol. 47, no. 3, pp. 353–369,
2008.

[5] V. Bonifaci, K. Mehlhorn, and G. Varma, “Physarum can compute shortest paths,” J. Theor.
Biol., vol. 309, pp. 121–133, 2012.

[6] L. Becchetti, V. Bonifaci, M. Dirnberger, A. Karrenbauer, and K. Mehlhorn, “Physarum can
compute shortest paths: convergence proofs and complexity bounds,” Automata, Languages,
and Programming, pp. 472–483, Springer, Berlin Heidelberg, 2013.

[7] L. Zhu, M. Aono, S.-J. Kim, and M. Hara, “Amoeba-based computing for traveling salesman
problem: Long-term correlations between spatially separated individual cells of Physarum poly-
cephalum,” BioSystems, vol. 112, no. 1, pp. 1–10, 2013.

[8] Y. Kondo and H.-A. Tanaka, “An electric circuit analogue of a mathematical model for adaptive
transport network in true slime mold,” Proc. NOLTA’07, pp. 521–524, Vancouver, Canada, 16–
19 September 2007.

[9] DIMACS, Ninth DIMACS Implementation Challenge – Shortest Paths, 2006. http://www.dis.
uniroma1.it/˜challenge9/.

[10] T. Ibaraki, Algorithms and Data Structures in C, Shokohdo, 1999 (in Japanese).
[11] S. Umetani, private communications, 2015.

94

