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SUMMARY  The averaged equation for an arbitrary number of oscilla-
tors coupled by nonlinear coupling scheme invented by S. Nagano, is de-
rived. This system is invented as a model of uni-cellular slime amoeba. By
using the averaged equation, we investigate the synchronization character-
istics of five coupled oscillators and a large number of coupled oscillators.
In particular, we present the statistical property of coupled oscillators in
terms of coupling factor y. We also investigate the effect of linear and non-
linear coupling terms for achieving synchronization, and confirm that the
nonlinear coupling term plays an important role for strong synchronization
than linear coupling term does.

key words: synchronization, coupled oscillator system, averaging method,
nonlinear coupling, slime amoeba

1. Introduction

The study of systems of coupled oscillators has attracted
constant interest in various areas of engineering, physics,
and mathematics {1]-[4]. In particular, mutual synchroniza-
tion of rhythms is extremely significant due to its practical
needs [5], [6]. Coupled oscillator system are often used in
modeling biological systems [7]. Recently, S. Nagano in-
vented a new nonlinear coupling scheme between limit cy-
cle oscillators based on a model of an aggregated uni-celluar
slime amoeba called “Dictyostelium discoideum” [8], [9].
He employed a van der Pol oscillator as a typical model
of the limit cycle oscillator. One of the characteristics of
this nonlinear coupling scheme is its strong same-phase syn-
chronization ability. Namely, different kind of oscillators
with different natural frequencies can be synchronized eas-
ily. Although these characteristics have been confirmed by
direct computer simulation, there is no theoretical approach
to this system so far.

In our previous paper, we analyzed two coupled van
der Pol oscillators with this scheme via averaging method,
and clarified various interesting characteristics peculiar to
nonlinear coupling [10]. In this paper, we are succeeded
in analyzing an “arbitrary” number of van der Pol oscilla-
tors coupled by this scheme via averaging method. Namely,
the explicit form of averaged equation for an *“arbitrary”
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number of coupled van der Pol oscillators can be derived,
and by using this equation, the steady-state characteristics
of the same-phase synchronized solution (mode) can be ob-
tained. The reason why we concentrate on the same-phase
mode is because it is practically important and indeed, the
uni-celluar slime amoeba shows the same-phase synchro-
nization to communicate with each other during aggregation
[11]*. Although the averaging method can be applicable to
“weak” nonlinear case theoretically, it is confirmed that in
our case the results of the averaging method (synchroniza-
tion probability versus the coupling factor) are applicable
for considerably strong nonlinear case.

2. Derivation of the Averaged Equation

A van der Pol oscillator adopted in this system is written as
follows (Appendix A).

dx

d
=5 el —xl)g’—; + =0 (1)

where ¢ denotes a (small positive) parameter showing the
degree of nonlinearity and where w denotes the natural an-
gular frequency™”.

Coupling the N-van der Pol oscillators via Nagano’s
method gives the following equation [9]:

N
X + wi [xk + Yk Z le
=1
2

N
= EWg 1—[xk+y;€2xl] ik=1,2,...,.N (2)
=1

where y; > 0 denotes a linear coupling factor, and where
¥, > 0 denotes a nonlinear coupling factor. Equation (2)
can be rewritten in the following vector form: -

X+ Bx = eCx — eG(%,X) (3a)
where
X = [x1, %2, .., x5]" (3b)

- *More accurately, each time waveform of the ‘intercellular
cAMP (= cyclic adenosine 3’, 5’-monophosphate) density presents
the same-phase synchronization during aggregation.

*In Nagano’s model, x associates with the intercellular cAMP
product, and x with the cAMP receptor.
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(1 +)/1)w% ylw% ............. ylw%
s (I+p)w; yws ... Y203
B=
yNw]Z\, ................. yvwy (1 +7N)(u12V
(3c)
) w1 0
C= - (3d)
0 wy
G(x,%) = [91(%, %), 2(%. %), ..., gn(x. %] (3e)

Each component of G(x, X) can be written as follows.

2

N
gi(x, %) = [xk +7,;le] O “

=1

We define the eigenvalues of B as Qf < Qf <

< QIZV and the associated eigenvectors as p; =
[p1j, P2js- - » pjIT for j = 1,2,...,N, respectively’. Ap-
plying a non-singular linear transformation x = Py to
Eq. (3a) and multiplying P~! from the left-hand side give
the following transformed equation.

j + By = 6Cy - £QG(y, ) (52)
where
o2 0
B= P'BP= .
0 Q2
C= PICP =[]
P =[py]
Q=P'=1[gl ij=12....N - (5b)

Equation (5a) can be written in the following scalar form:

N
€ Z Cultk — e (y, Y)
=1
= efily,y), k=12,...,N (6a)

where the functions #; is expressed in terms of y, y through
the transformation x = Py as follows (Appendix B) :

i+ Qg

) N N N .
hk(y’ y) = Z Z Z b (ka my, my, m3)ym1ym2ym3 (6b)

m1:1 m2=1 m3=1

and where
N
b (k’ mi, niy, m3) = Z GrsWsQsmy Asmy P sms

s=1

N
Agn = Psm + 7’; Z Pim (6¢)
=1
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In the averaging method, we first assume ¢ = 0 in
Eq. (6a), and obtain the unperturbed solution. It can be cal-
culated easily as y; = pp SIn(Qg? + 1), Jr = Prl cos(Ct +
O)fork=1,2,...,N.

When ¢ # 0, we assume p;, and 6, as functions of time.
From the theory of averaging, the dynamics of these func-
tions can be calculated from the following averaged equa-
tionfork=1,2,...,N[12}:

x = Qi (fe(y. §) cos(Qut + 6))
k
1)

O = (fi(y, ¥) sin(€4t + 6;)) (7N
Qox

where () denotes the time average from zero to infin-
ity. Equation (7) can be calculated by assuming the non-
resonant condition for k = 1,2, ..., N as follows (Appendix
C):

N

1 1

pk = Egpk Ekk_'i Zlb(k,ml,ml,k)pil
mp=

1
+ bk k k)os

ék =0. ' (88.)

where b(k, my, mo, m3) is given in Eq. (6¢) and & is given
as

N
Gk = Zwl(szPZk (8b)
=1

The non-resonant condition can be written as follows for
my,my,m3 =1,2,-++ N,
(1) Q0+ =0 form; #my #m3#k
(2) 2 £ Qy, £Q,, =0 form; #m #k
3) 3% -Q,, =0 for k £ mj
)]
Since 6 can be determined as an arbitrary constant, we only

investigate the amplitude equation. Therefore, by defining
Ue = pi, Eq.(8a) can be simplified as

Uy

N
1
el |t — 3 Zb(k, mi,my, k)Up,

my=1

1
+ Zb(k’ k ke, k)Uy

il

el (U1, Uy, -+, Un) (10

fork = 1,2,...,N. We regard Eq. (10) as the fundamental
averaged equation.

Tt is not verified so far that the eigenvalues of B are all positive
real numbers. However, as far as our computer calculation shows,
they are positive real numbers. It should be clarified in the future
that in what case they become positive real numbers.
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3. Analysis of Steady-State Solutions via Averaging
Method

The steady-state solution corresponds to an equilibrium
point in Eq.(10). There are many equilibrium points for
a large number of mutually coupled oscillators. The stabil-
ity of each equilibrium point can be obtained by using the
following Jacobian matrix .

oF, aF,
Jo=| ro (11
OFy JdFy

Namely, if all eigenvalues of J have negative real parts, the
solution is asymptotically stable. If, at least, one of them
has positive real part, it is unstable. In this manner, we can
judge the stability of each equilibrium point.

By direct computer simulation of Eq. (2), if the nonlin-
earity is weak ( for example, £ = 0.1), we can observe multi-
ple steady state solutions determined from initial conditions.
On the other hand, for strong nonlinear case (for example,
& = 1.0), we can observe only the same-phase solution. Be-
sides, each time waveform of the intercellular cAMP den-
sity of actual uni-cellulear slime amoeba presents the same-
phase synchronization during aggregation [11]. Therefore,
we will concentrate on the same-phase solution in this paper.

From Frobenius theory [13], the sign of all compo-
nents of eigenvector (piy,k = 1,2,...,N) associated with
the largest eigenvalue (Q%,) of B is positive. Therefore, the
same-phase solution takes the following form:

Uy # 0,Uy=0,k=1,...,N-1
4
b(N,N,N,N)’

1 .
= ——— :O
= poN \/b(N, NN Pok

= yn = pon SIN(Qut + Oy), yx = 0
= x1 = pinpPon SIn(Qnt + Oy)
X2 = panpPon Sin(Qut + Oy)

= U()N = U()k:O

Xy = pnnpon SIn(Qut + Oy) (12)

The p;y is positive fori = 1,2, ..., N from Frobenius theory.
In Eq. (12), the phase 6y is an arbitrary constant. Therefore,
we take 6; = 0 for all i for simplicity.

4. Synchronization Characteristics of the Same-Phase
Selution

In this section, we will show computer calculations of the
same-phase synchronization based on the averaged equa-
tion. At first, we will investigate the synchronization char-
acteristics of five coupled oscillators. Then, we will inves-
tigate a larger number of coupled oscillators. Although we
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Fig.1  Steady-state amplitude ps in terms of ws (varying from 0.001 to
1.0) for various values of coupling factor y for w; = 0.1,wp = 02,w3 =
03,4 =04.

can fix the linear and nonlinear coupling terms y; and y;
independently, we take these two factors equal ( such as
Y = % = v, for all k) for most cases in the succeeding
sections, unless so identified.

4.1 Synchronization Characteristics for Five Coupled Os-
cillators

We will investigate the synchronization property of the
same-phase solution for five coupled oscillators.

Figure 1 presents the same-phase amplitude ps (in the
y-domain) in terms of ws = 0.001-1.0 for various values
of y, where we fixed w; = 0.1,w; = 0.2,ws = 0.3 and
wys = 0.47. In this case, the same-phase solution exists for
v > 0.8 only. Both ends of each curve present the syn-
chronization limit. In this system, the synchronization range
increases with the increase of coupling factor y. In par-
ticular, for y > v, = 1.9, synchronization range expands
drastically. Namely, synchronization can be achieved for
all values of ws = 0.001 ~ 1.0. Such a property could
be observed for other cases. For example, when we fix
w; = 0.01,w2 = 0.02,w3 = 0.03,ws = 0.04 and varying
ws = 0.001 ~ 1.0 in the same manner, synchronization can
also be achieved for all values of ws for y >y, ~ 2.5.

Figure 2 (a) presents the synchronized angular fre-
quency Qs in terms of ws. We compare this result with the

empirical formula obtained in [9]: wy = Jw? +y IV, o2,

where w; is the angular frequency of the same-phase syn-
chronization and w; is the maximum natural angular fre-
quency, i.e. w; = w; for 2 < i < N in his notation'T,
Figure 2(b) compares the ws versus w; characteristics from
the formula with the ws versus €5 characteristics from our
computer calculation for ¥ = 2.3 for example. They show

"It is enough to vary 0 < ws < 1, because if w;/w; > 1, then
w,-/ w j < 1.

'Since all components of B are positive, it is said from a theo-
rem in p.171 in [13] that the largest eigenvalue of B (QIZV) satisfies
the following relation: Q2, < wﬁ. Therefore, the curve from the for-
mula is close to but larger than our simulation curve in Fig. 2(b).
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Fig.3  Time waveforms from direct computer simulation for five coupled

oscillator case fore = 0.1,y = 1.4, w; = 0.1, wp =02, w3 = 0.3, w4 =04
and ws = 0.5.

ics of the slime, this may be reasonable as follow. An os-
cillator with low natural frequency corresponds to inactive
slime cell and an oscillator with high natural frequency cor-
responds to active slime cell. When they are coupled, the
contribution of the active cell becomes larger than that of
the inactive cell.

4.2 Synchronization Characteristics for a Large Number
of Coupled Oscillators with Randomly Distributed
Natural Frequencies

(b) Comparison of Qs with w;.

Fig.2  Synchronized angular frequency Q5 in terms of ws (varying from
0.001 to 1.0) for w; = 0.1, wr = 02, w3 = 0.3, ws = 0.4 (a) Computer
calculation result for various values of coupling factor y (b) Comparison
between our computer calculation result and Nagano’s heuristic formula

From the above results and our previous work [10], [14], it
seems that the synchronization range becomes drastically
large beyond a certain coupling factor y.. In particular,

result for y = 2.3.

Table 1

Comparison between computer simulation results and averaging

method results for N=5,y = 14, w; = 0.1, wp = 02, w3 = 0.3, wg = 0.4

and ws = 0.5.
Averaging method | Computer simulation

Qs 0.9772 0.9775
Amplitude of x; 0.0164 0.0175
Amplitude of x; 0.0679 0.0677
Amplitude of x3 0.1615 0.1615
Amplitude of x4 03124 0.3126
Amplitude of x5 0.5505 0.5500

in good agreement. We confirmed the empirical formula
agrees well for other values of y. Synchronized angular fre-
quency Qu is much larger than natural angular frequency
of each oscillator. This is due to the manner of coupling

adopted in Eq. (2).

Table 1 compares the result of averaging method with

that of direct computer simulation of Eq.(2) for & =

0.1,

vy =14, w; = 0.1, wy = 02, w3 = 03, wy = 0.4 and

for two coupled van der Pol oscillator case, we have con-
firmed analytically that the synchronization range of the
same-phase solution becomes infinitely large fory > 1+ V2
[10]. However, for a large number of coupled oscillator
cases, there are many combinations of the natural angular
frequencies. Therefore, we will set natural angular frequen-
cies according to the following statistical rule.

w1:1.0
wp=r+({1-roc;,2<k<N-1) (13)
wy =71

In Eq.(13), o denotes the uniform random number dis-
tributing from 0 to 1.0, and r (0 < r < 1.0) defines the
minimum value of natural angular frequency. Namely, nat-
ural angular frequencies w; and wy are set to 1.0 and 7, re-
spectively, and other wy is set uniformly random between r
and 1.0.

We will show the results based on averaging method
for the 10 coupled oscillator case. Here, we take 100 sam-
ples of natural angular frequencies from Eq. (13) for fixed y
and judge the stability from Eq. (11)" . Then, we obtain the
synchronization probability p/q where q is the trial number

ws = 0.5. They show in good agreement. Figure 3 demon-
strates the result of direct computer simulation in this case.
The oscillation with higher natural frequency suppresses the
amplitude of oscillation with lower natural frequency for
achieving synchronization. From the view point of dynam-

and p is the number of stable samples. Figure 4 shows the
synchronization probability in terms of coupling factor y for

¥We check the non-resonant condition (9) to pick up these sam-

ples.
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1.2 .

SYNC Probability

0 0.2 0.4 0.6 0.8 1 12 14

Fig.5 Synchronization probability in terms of y among 30 coupled os-
cillator case for various values of 7.

various values of r. For r ~ 0.9, the-same phase synchro-
nization is achieved easily. On the other hand, for r ~ 0, it
is difficult to synchronize. However, when coupling factor y
is sufficiently large, the same-phase synchronization seems
to be achieved for any r. There exist a critical v for each r =
constant curve above which synchronization is achieved for
any combination of natural angular frequencies. This criti-
cal value decreases with the increase of r.

Next we will show the results for larger size of cou-
pled oscillator case, namely N = 30. Figure 5 shows the
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by averaging method with that obtained by direct computer simulation for
(a) € = 1.0 and for (b) £ = 3.0.

synchronization probability for » = 0.001,0.01,0.1 and 0.3.
It should be noted that the synchronization is achieved for
comparatively small coupling factor y compared with the
10 coupled oscillator case. This is because the natural angu-
lar frequencies are more densely distributed in limited fre-
quency range. Therefore, a larger number of coupled oscil-
lator systems may be more easily synchronized, though the
amplitude of each oscillator is more suppressed. It seems
that for r ~ 0 the synchronization probability curve con-
verges to a limiting curve.

Figures 6(a) and (b) compare the synchronization prob-
ability in terms of vy obtained by averaging method with
that obtained by direct computer simulation for £ = 1.0
and 3.0, respectively’. The computer simulation results for
£ = 1.0 agrees well with the results of averaging method.
This means that although averaging method results is guar-
anteed for small € only, in practice, it is applicable for non-
weak nonlinear cases around £ = 1.0. However, when &
becomes 3.0 these two results differ considerably.

Figures 7(a) and (b) present the coupling factor vy ver-

"In our computer simulation, many randomly chosen initial
values are given to Eq. (2) and we compute the probability for the
steady-state solution converging to the same-phase solution. For
£ 2'1.0, it seems that other modes except the same-phase become
unstable.
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sus synchronization probability for (a) ¥ = 0.1y and (b)
v = 0. In these figures, we investigate the effect of nonlin-
ear coupling factory’ =] =y, = -+ = v}. Wheny’ =0,
synchronization can not be achieved below r = 0.8. How-
ever, for ' = 0.1y, it is achieved, at least, above r = 0.6.
Further for 9’ = v, it is achieved above r ~ 0 (in Fig.4).
From these results, the origin of strong synchronization of
this coupling scheme exists in the nonlinear coupling term
for such a large number of coupled system.

5. Conclusions

The averaged equation for an arbitrary number of oscil-
lators coupled by nonlinear coupling scheme invented by
S. Nagano, is derived. By using the averaged equation, we
investigate the synchronization characteristics of five cou-
pled oscillators and a large number of coupled oscillators.
In particular, we present the statistical property of coupled
oscillators in terms of coupling factor y. As a result, it is
confirmed that there is a critical coupling factor vy, above
which synchronization can be achieved for any combination
of natural angular frequencies for a fixed » which determines
the range of natural angular frequency distribution. We also
investigate the origin of this strong synchronization scheme.
To do this, we reduce the effect of nonlinear coupling fac-
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tor as ' = 0.1y and ¢’ = 0, and find that these two cases
show qualitatively different synchronization characteristics.
Namely, the ' = 0.1y case can achieve synchronization
for fairly small values of ». In contrast, the ' = 0 case
can achieve synchronization for r > 0.8 only. Namely, syn-
chronization ability becomes stronger by adding even small
nonlinear coupling term. As a future problem, we will in-
vestigate real slime dynamics by using this equation.
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Appendix A: Van der Pol Equation

Assuming the cubic nonlinearity for NC, i.e., iyc = —giv +
gsv®,g1,93 > 0 in Fig. A- 1, Kirchhoff’s current law gives
following equation:

1 dv
vadt+Czi;—glv+g3v3:0 (A1)
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v o
R N 4
L C ]
-
Fig.A-1 A van der Pol electric circuit where L is the inductance, C is

the capacitance, and NC is the nonlinear conductance.

Taking the time derivative of Eq. (A- 1), we obtain the fol-
lowing equation.

dQU gi 3g3 2 1
— =1 -—=v)—=+—=0v=0 A-2
a2~ ¢! g+ et (A-2)
By changing the variables as:
g1 ,
V=0, Vo= o, —1 = wf
ST V3gs VL
L
£=¢ \/—g (A-3)

van der Pol equation can be derived as Eq. (1).

Appendix B: Derivation of the Function %; in Eq. (6b)

N
m(,3) = ), ads® )| x=py
=1 % =Py

N N \2
= Z GrsWs [xs + 7§ Z xl] Xg
s=1 =1

X=
%= By
(A-4)
Next,
N N N N
KAV, ) 0= ) Pt + Y, ) (Z pzm] Ynm
I=1 m=1 m=1\1I=1
N N
= {psm +% ), le] Ym
m=1 =1
N
= > dmyn (A-5)
m=1
where ag,, is defined in Eq.(6c).
Further,
N
%= ) Pomiim (A-6)
m=1

Combining Eq. (A- 4)—(A-6), the function A(y, ¥) becomes
as follows:

N N N
h(y,y) = Z ks {Z‘ asmym] [Z psmgm} Wy

s=1 m=1 m=1
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= Z Gis(@siyy + agys + - + asnyn ) (Psiin

s=1

+ p5292 +oee psNyN)ws

quws Z Z Zasmlasmzpsmaynnymzym

lmz 1m3 1

Z Z Z b(k ml’mz’m3)ym!ym2ym3

=1 mg—l msz= 1

(A7)
where b (k, m|, my, ms) is defined in Eq. (6¢).

Appendix C: Derivation of the Averaged Equation (8a)

Defining yr;, = (41 + 6, the averaged equation for o can be
written as:

& R
o o (fi(y, ¥) cos px)
K

N

g—;;; Z Ca1€ (cos ¥ - cos i)

=1

11

N N

N
Z Z Z b(k my, My, m3)Pm1Pm2Pm3Qm3 AVI

my=1my=1 m3=1

(A-8a)

where
AV = (sin Yy, - SiN Y, - COS P, - COS Y ) .
The term {cos i - cos Y ) becomes 1/2 for | = k, because

<cos2 ¢k> = {1/2 + 1/2cos 2yn.) = 1/2, otherwise it is zero

for all [ # k. Next, we will calculate AV;. Although there
are many cases, the non-zero cases are limited to the fol-
lowing two cases, if the non-resonant condition Eq. (9) is
satisfied.

(A-8b)

casel : my=m £kk=ms:

AV = <sin2 Ym, - COS* l/lk>

1 1 1
<- — = COS 2\, + 1 cOs 2urk

4 4

—% €08 (2, —2ur) —é— oS (24, + 2¢rk)>

1
= | (A-9a)

case 2 : my
. 1 1 v
AV, = (sm2 W - cos? l/lk> = <§ -3 cos 4;[rk> = -
(A-9b)

=mpy=m3=k:

Therefore, the averaged equation for p; becomes as Eq. (7).
Next, the averaged equation for 8, can be written as :

&=é§mmwmm>
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N
—&

= 22N e si
O ;Ckzpz 1 (COS Y - sin )
N N

N
- Z b(ka ml 1) m2’ m3)pm1pm2pmggm3 * AV2

my=1 m2=1 m3=1

(A-10a)
where

AV, = (sinypy, - sinyy, - cos Py, -singg). (A-10b)

The term {(cos; - sinyy) is equal to zero for all k and /.
The term AV, becomes zero for all possible combinations
of my, my, ms and k, if the non-resonant condition Eq. (9) is
satisfied. Therefore, the averaged equation for §; becomes
as Eq. (7).
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