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RAPER  SpeciaJts$ueonNonlinearTheoryanditsApplications

Averaging Method  Analysis of  Synchronization Characteristics of

a  Large Number  of  Nonlinearly Coupled van  der Pol Oscillators

Kuniyasu  SHIMIZU'I'a), Student Member,  [Ebtsuro ENDOtb), Flellow,and Hisa-Aki [e4NAKAtt, Mlember

SUMMARY  The averaged  equatgoll  for an  arbitrary  number  of  oscilla-

ters coupled  by nonlinear  coupling  scheme  invented by S. Nagano, is de
rived. This system  is invented as a model  of  uni-cellul  ar slinne amoeba.  By

using  the averaged  equation,  we  investigate the synchrenization  character-

istics of  five coupled  oseillators  and  a large numbeT  of  ceupled  oscillators,

In particular, we  psesent the statistical property of  ceupled  oscir]ators in
terrns of  coupling  factor v. We  also investigate the effect of  linear and  non-

linear coupljng  terrns for achiev'ing  synchrepiztttion.  and  confirm  that the

nonlinear  coupling  term plays an  impertant role for strong  synchronizatien

than ]inear coupling  term does,
kqy words:  synchrvnizatien,  coupledescillatersystem,  averagingmethocL

nonlinear  coupling,  slime  a]noeba

1. Iiltroduction

nurnber  ef  coupled  van  der Pol oscillators  can  be derived,
and  by using  this equation,  the steady-state  characteristics

of the same-phase  synchronized  solution'(mode)  can  be ob-
tained. The reason  why  we  concentrate  on  the same-phase

mode  is because it is practically important and  indeed, the
uni-celluar  slime  arnoeba  shows  the same-phase  synchro-

nization  to cornmunicate  with  each  other  during aggregation

[11]*, Although the averaging  method  can  be applicable  to
"weak"

 nonlinear  case  theoretically, it is confirmed  that in
our  case  the results of  the averaging  method  (synchroniza-
tion probability versus  the coupling  factor) are  applicable

for considerably  strong  nonlinear  case,

The study  of  systems  of  coupled  oscillators  has attracted
constant  interest in various  areas  of  engineering,  physics,
and  mathematics  [1]-[4], In particular, mutual  synchroniza-

tion of  rhythms  is extremely  significant  due to its practical
needs  [5], [6], Coupled oscMator  system  are often  used  in
modeling  biological systems'  [7], Recently, S. Nagano in-
vented  a new  nonlinear  coupling  scheme  between limit cy-
cle  oscillators  based on  a  model  of  an  aggregated  uni £ elluar

slime  amoeba  called  
"Dictyosteljum

 discoideum" [8], [9].
He  employed  a  van  der Pol oscillator  as  a  typical model

of  the limit cycle  oscillator. One of  the characteristics  of

this nonlinear  coupling  scheme  is its strong  same-phase  syn-

chronization  ability. Namely, different kind of  oscillators

with  different natura]  frequencies can  be synchronized  eas-

ily. Although these characteristics  have  been confirmed  by
direct computer  simulation,  there is no  theoretical approach

to this system  so fhr.

    In our  previous paper, we  analyzed  two  coupled  van

der Pol oscillators with  this scheme  via averaging  method,

and  clarified various  interestihg characteristics  peculiar to
noniinear  coupling  [10], In this paper, we  are succeeded

in analyzing  an  
"arbitrary"

 number  of  van  der Pol escilla-
tors coupled  by this scheme  via  averaging  method.  Namely,

the explicit forrn of  averaged  equation  for an  
"arbitrary"

   Manuscript received  November  29, 2006.

   Manuscript revised  March 20, 2007.

   Final manuscript  received  Apri1 16, 2007,

  
"'The

 authors are with  the Department of Electronics and  Com-
munication,  Melji University, Kawasaki-shi, 214-g571 Japan.

  
t'The

 author  is with  the Department of  Electronic Engineer-
ingTheUniversityofElectro-Communications(UEC),Chofu-shi,
182-8585Japan.

  a) E-rnai1: shimizu@isc,meiji.ac.jp

 b)E-mail: endoh@isc.melji.ac.jp

   DOI:10.10931ietfecfe90-a.IO.2162

2. DeriytttionoftheAyeragedEquation

A  van  der Pol oscillator adopted  in this system  is written  as

fbllows (Appendix A) ,

ktl-sw(i-x2) /1+tu2x=o (l>

where  s  denotes a (sma]1 positive) parameter showing  the
degree of  nonlinearity  and  where  to dcnotes the natural  an-

gular frequency*'.

   Coupling the N-yan  der Pol escillators  via  Nagano's
method  gives the following equation  [9] :

   xk + W:  (Xk + 7k #.1 Xl)

     =stukI]-(xk+7t#.1xl)
2

1xk,kT1,2, ,lv  (2)
             .

where  7k >  O denotes a linear coupling  factor, and  where

7t >  O denotes a nonlinear  coupling  factoz Equation (2)
can  be rewritten  in the fbllowing vector  forrn:

X +  Bx =  sCS  
-

 eG(x,  k)

where

x  ii [xl,x2,...,xN]T

(3a)

(3b)

  
'More

 accurately,  each  time waveform  of  the intereellular
cAMP  (= cyclic  adenosine  3', 5'-monophospltate) densLty presents
the same-phase  synchronization  duning aggregatjon.
  

"In

 Nagano's model,  x  associates  with  the intercellular cAMP

product, and  dr with  the cAMP  receptor.
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to1
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,

t-------lst-----

o

-

   271th)l72to;

  I

7NCL)ft (1+){N)c,)ft(3c)

(3d)
         O tuN

    G(x,k) [gi(x,l),g2(x,S),...,gN(x,S)l'. (3e)

Each component  of  G(x, S) can  be written  as  fo11ows,

    gk(x, x)=(xk+7,z  #.i xi)
2tokxk

 (4)

    We  define the eigenyalues  ofB  as 9Z <  922 <

･･･
 <  9ft and  the associated  eigenvectors  as  pj =

[pij,p2j,''',pNj]T fOrj -- 1,2,.,.,N, respectivelyt,  Ap-

plying a non-singular  linear transformation x  =  Py to

Eq. (3a) and  multiplying  P-i from the left-hand side  give
the fo11owing transformed  equation.

    y +  By =  sey  -  sQG(y,  y)

where

g .  p-IBp .9?

o.,,o 92.

(5a)

    e i  p-icp  =  [aif]

   P =  [PiJ-]

    Qi  P-'=[gij],  i, J' 
--
 1,2,,,.,N '

 (5b)

Equation (5a) can  be written  in the fo1]owing scalar form:

                N

    ijk +  9Z"k =  sZ  Ektek - shk(y,y)
               l=1

            i  sft(y, Y), k=  1, 2,,..,N  (6a)

where  the functions hk is expressed  in terms of  y, Y through

the  transformation  x  =  Py as follows (Appendix B) :

             N  N  N

     hk(y,S)= £  Z Zb(k,mi,m2,m3)y.,u.,e., (6b)
            ml=lm2=lm3=1

and  where

                   N

    b(k,ml,m2,m3)iZqk,cv,a,.lasm:psm,

                N
 

S=1

    asm=psm+7:Zpim  (6c)
                l=1

    In the averaging  method,  we  first assume  g  =  O in
Eq. (6a), and  obtain  the unperturbed  solution. It can  be cal-
culated  easily  as  uk =  pk sin(9kt  +  ek), 9k. =  pk9k  cos(9kt  +

ek)fOrk=1,2,...,N.

    When  s  t e, we  assume  pk and  ek as functien$ of  time,

From  the theory of  averaging,  the dynamics of these func-
tions can  be calculated  from the fo11owing averaged  equa-

tionfork=1,2,.,.,N[12]:

        E

   Pk 
=

 fiE (A(y,y)cos(nkt+ 
ek)>

    . E

    ek 
=-g,p,

 <ft(Y, Y) Sin(9kt+ek)>  (7)

where  <･> denotes the time average  from zero  to infin-
ity. Equation (7) can  be calculated  by assuming  the non-

resonant  condition  fbrk=  1,2,..,,N as  fOllows (Appendix
C):

    Pk =  Sepk (Ukk- itny,.lb(k, Ml , m] , klp:,

                               + ib(k, k, k, klpZ )
    Ok=o.' (sa)

where  b(k, mi,m2,  m3)  is given in Eq, (6c) and  akk is given
as

         N

    ffkk=Zbllqklptk (sb)
         IT1

The non-resonant  condition  can  be written  as fo11ows for
Ml,  m2,  m3  =  1, 2,･･, ,IV.

    (1) 9m,± 9m,± 9m,±9k=O  for nzt  4 m2  4  m34k

    (2) 29k ± 9m, ± 9m,=O  formilm24k

    (3) 39k-n.,, =O  forklm3

                                           (9)

Since ek can  be determined as an  arbitrary  constant,  we  only

investigate the amplitude  equation.  Therefore, by defining
Uk i  pZ, Eq.(8a) can  be simplified  as

    Crk =  sUk  (ffkk 
-
 S 

.Zl.lb(kim1,m1,k)U.,

                               + tb(k, k, k, k) Uk)

       ieFk(Ui,U2,･･･,Uiv)  (10)

fbrk=  l,2,...,N. We  regard  Eq,(1O) as  the  fundamental

averagedequation.

   
tlt is not  veri  fied so  far that the eigenvalues of  B  are  all positiye

real  numbers,  However, as  far as  our  computer  calculation shows,

they  are  positive real  numbers.  It should  be clarified  in the future
that in what  case they become positive real  numbers.
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3. Analysis of  Steady-State Solutions via  Averaging
   Method

[ihe steady-state  selution  corresponds  to an  equilibrium

point {n Eq.(10). There are many  equilibrium  poirrts for
a 1arge number  of  mutuaily  coupled  oscMators.  [[he stabil-

ity of  each  equilibrium  point can  be obtained  by using  the

following Jacobian matrix  .

J=

OFIOUiiOFNOUI
1--

,,

OFIeUN

 1･OFN6UN (11)

-tt

Narnely, if al1 eigenvalues  of  J have negative  real parts, the
solution  is asymptotically  stable, If, at least, one  of  them
has positive real  part, it is unstable.  In this manner,  we  can

judge the stahility  of  each  equilibrium  point.

    By direct computer  simulatien  of  Eq. (2), if the nonlin-

earity  is weak  ( fdr example,  s  =  O,1), we  can  observe  multi-

ple steady  state solutions  determined from initial coilditions.

On the other  hand, for strong  nonlinear  case  (for example,

s  =  1.0), we  can  observe  only  the sarne-phase  solution.  Be-

sides, each  time wavefbrm  of  the intercellular cAMP  den-
sity of  actual  uni-cellulear  slime  amoeba  presents the same-

phase synchronization  during aggregation  [1 1], Therefbre,
we  wi]1 concentrate en  the same-phase  solution  in this paper.
    From  Frobenius theory [13], the sign  ef al1 compo-
nents  of  eigenvector  (l]kN,k =  1,2,.,,,N) associated  with

the largest eigenvalue  (9k) of  B  is positive. Therefbre, the
same-phase  so}ution  takes the fo11owing form:

    UN t O, Uk=O,k=1,...,N-1
                    4
        =>  UoN=  

,Uok=O

               b(N, N, N, Nl)

="  PON =
,POk=O

=>  uN =  poN sin(9Nt  + eN), uk =  O

O  XI =  IJtNPoN Sin(9Nt  +  eN)

  x2  = p2NpoN  sin(9Nt  +  eN)

         I
         xN  rpNfvpoN  sin(9Nt+  aN) (12)
The piN is positive for i =  1 , 2, . . , , N  from Frobenius theory.
In Eq. (12), the phase eN is an  arbitrary  constant,  Therefbre,

we  take ei =  O for all i fOr simplicity.

4. Synchronization Characteristics of  the Same-Phase
   Solution

In this section,  we  will show  computer  calculations  of  the
same-phase  synchronization  based on  the ayeraged  equa-

tion. At first, we  wM  investigate the synchronization  char-

acteristics  ef  five coupled  oscillators,  Then,  we  will  inyes-

tigate a  lar:ger number  of  coupled  oscillators, Although we

tA

 1O.9o.s

.m  
e,7O,6O.5O.4O.3

                         TO,8
                         Fl,1 ,,..,
         t  )t:t.4 i",,..,..

                         T=ri.6 m--i.

                         Fl.9 -"...
                         v=3.e 

-14i,,,,

   
--j-dltlrll-tl--ny1-L-ilttllptplPl--

ti//tieiJ//iTh/"///-///t//tb/i/"idiT//-/m/7d/vi/utt//t,"//""v/'i"i"/-itt:irf'ILt-/-/-i-

l'il:[:' llLl 
･:ll::i

 ::lil::1'il:.････-･･
                        pdd-s-p---t-d

                          t--li-1-1-[1-

                    111L-ql:iTdtlll---Tt-T-blibtny-1nyttt---b-LEd-IT---dlilsLlillil-l
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Fig.1 Steady-state ampHtude  ps in terms  of  ws  (vatying from O,OOI to
1.0) for various  values  of  coupling  factor 7 for tut  =  O.1, bl2  =  O.2, tu3 =

O.3, to4 =  O.4,

can  fix the linear and  nonlinear coupling  terms 7k and  7L
independently,. we  take these two  factors equal  ( such  as

7 i  7k =  7yl for all k) for most  cases  in the succeeding
sections,  unIess  so  identified.

4.1 Synchronization Characteristics foT Five Ceupled Os-
    cillators

We  will  investigate the synchronization  property of  the
same-phase  solution  for five coupled  oscillators.

    Figure 1 presents the same-phase  amplitude  ps (in the
y-domain)  in terms of  tus  =  e,OOI-1.0 for various  yalues

of  7, where  we  fixed bli =  O,1,to2 =  O,2,to3 =  O.3 and
w4  =  O,4i'. In this case, the same-phase  solution  exists  for

7 2  O.8 only, Both ends  of  each  curve  present the syn-
chronization  limit. In this system,  the synchronization  range

increases with  the  increase of  collpling  faetor 7. In par-
ticular, fOr 7 2 7. t 1.9, synchronization  ranga  expands

drastically. Namely, synchronization  can  be achieved  for
all values  of  ws  =  O,OOI -  1.0. Such a property could
be obseryed  for other  cases, For example,  when  we  fix
toi =  O･Ol,to2 =  O.02,to3 =  O.03,to4 =  O.04 and  varying

tos  =  O.OOI -J 1.0 in the same  mamier,  synchronization  can

a]so be achieved  for all values  ef ws  for 7 Z 7c s 2,5,

    Figure 2 (a) presents the synchronized  angular  fre-

quency sts in terms ef  tus.  We  compare  this result  with  the

empirical  formula obtained  in [9]: tus =  tol +  7Zr.i  tu7,

where  o,  is the angular  frequency of  the same-phase  syn-

chronization  and  toi is the maximum  natural  angular  fre-
quency, i.e. toi  ) bli fbr 2 s i <. N  in his notationH',
Figure 2(b) compares  the ws  versus  w,  characteristics  from
the fbrmula with  the ws  versus  ns characteristics  from our
computer  calculation  for 7 =  2,3 for example.  They show

   
TIt

 is enough  to vury  O <  tos s 1, because if bljfcai 2 1, then
toilwj  s 1.

  
'[''tSince

 al1 components  of  B  are  pesitive, it is said  from a  theo-
rem  in p.171 in [13] that the 1argest eigenvalue  of B  (9k) satisfies
the following relation  : 92N <- wi  . Thcrefdre, the curve  from the for-
mula  is close to but 1arger than our  simulation  curve  in Fig. 2(b).
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1

Fig. 2 SynchTonized angular  
'frequency

 ns in terms of  a)s (varying from

O.OOI to 1.0> for wl  =  O,1, bl2 =  O.2, to3  =  O.3,w4 =:  O.4 Ca) Cornputer
calculation  result  for various  values  of  coupling  factor 7 (b) Compurison
between  our  computer  calculation  result  and  Nagano's heuristic formula
result  for 7 =  2.3.

Thblel  Comparisonbetweencomputersimulationresultsandaveraging

method  resutts  for N=5,v  =  1.4, wl  =  O.1, w2  =  O,2, bl3 =  O.3, bl4  =  O.4
and  ws  =  O.5.

AveragingmethodComputersimu]ation
ns O.9772 O.9775

Amptitudeofxl O.O164 ODI75

Ampljtudeofx2 O.0679 O.e677

Arnplitudeofx3 O,1615 O.1615
Amplitudeofx4 O.31L24 O.3126
Amplitudeofxs O.5505 O.5500

in good agreement.  We  confirmed  the empirical  fbrmula
agrees  wel]  for other  values  of  7. Synchronized angular  fre-

quency 9N  is much  larger than natural  angular  frequency
of  each  oscillator.  This is due to the manner  of  coupling

adopted  in Eq. (2). 
'

    [[lab]e 1 compares  the result of  averaging  method  with

that of  direct computer  simulation  of  Eq. (2) for s  =  O.1,

7 =  1,4, bli =  O,1, w2  =  O.2, to3 =  O.3, bl4  =  O,4 and
bls  =  O.5. They  show  in good agreement.  Figure 3 demon=
strates the result ofdirect  computer  simulation  in this case.
The oscillation with  higher natural  frequency suppresses  the
arnplitude  of  oscillation with  lower natural frequency fbr
achieving  synchronization.  From  the view  point of  dynam-

k"""e8.e-mu<

Fig.3

O,6O.4O.2e-O.2O,4-O,6

escillator  case  for s  = O. 1, 7
and  tos =  O.5.

  sooo  soo2  saotL soo6  ooos  selo

                  T;.me

Time  waveforms  from direct computer  simulation  for five coupled

            ,= 1.4, col =  O.L, w2  =  O,2, w]  =  O.3, tu4 =  O.4

ics of  the slime,  this may  be reasonable  as follow. An  os-

cillator with  low natural  frequency corresponds  to inactive
slime  cell  and  an  oscillator  with  high natural  frequency cor-
responds  to active slime  cell, When  they  are  coupled,  the
contribution  of  the active  cell  becomes 1arger than that of
the inactive cell.

4.2 Synchronization Characteristics for a Large Number

    of Coupled Oscillators with  Randomly  Distributed

    Natural Frequencies

From  the above  results and  our  previous wotk  [101, [14], it
seems  that the synchronization  range  becomes drastically
large beyond a  certain  coupling  factor x･, In particular,
fbr two  coupled  van  der Pol oscillator  ¢ ase, we  have con-
firmed analytically  that the synchronization  range  of  the
same-phase  solutien  becomes infinitely 1arge for 7 ) I + Vii
[10]. However, fbr a large number  of  coupled  oscillator

cases, there are many  combinations  of the natural  angular

frequencies, Therefore, we  will  set  natural  angular  frequen-
cies  according  to the fbllowing statistical  rule.

ctil =  1.0

tok=r+(1-r)crk,(2gkgN-1)

(oN=r

(13)

In Eq.(13), ak  denotes the unifOrm  random  number  dis-
tributing from O to 1.0 

,
 and  r (O <  r  <  1,O) defines the

minimum  value  of  natural  angular  frequency. Namely, nat-
ural  angular  firequencies cL)i and  oL)N are set to 1.0 and r, re-

spectively, and  other  wk  is set uniformly  random  between r
and  1.0.

    We  will  show  the results  based on  averaging  method

for the  10 coupled  oscillator  case. Here, we  take lOO sam-

ples of  natural  angular  frequencies from Eq. (13) for fixed 7
andjudge  the stability firom Eq, (11)i' . Then, we  obtain  the
synchronjzation  probability ptq where  q is the nial number
and  p is the number  of  stable  samples,  Figure 4 shows  the

synchronization  probabil ity in terms  ot' coupling  factor 7 for

   
'Wecheckthenon-resonantcondition(9)topickupthesesam-

ples.
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Fig. 5 Synehronization probability in terrns of  v arnong  30 coupled  os-

cillator case  for various  values  of  r.

various  values  of r. Forr  s O.9, the-same  phase synchro-
nization  is achieved  easily.  On  the other  hand, forr fs O, it
is diMcult to synchronize,  However,  when  coupling  factor v
is suthciently  1arge, the same-phase  synchrenization  seems

to be achieved  for any  r. There exist a  critica]  7 for each  r  =

constant  curve  above  which  synchronization  is achieved  fbr
any  combination  of  natural  angular  frequencies. Tliis criti-
cal  va]ue  decreases with  the increase of  r,

    Next we  will  show  the results for larger size  of  ceu-

pled oscitlator case, namely  N  =  30, Figure 5 shows  the

synchronization  probability for r =  O,OOt, O.O1,O.1 and  e,3,
It should  be noted  that  the synchronization  is achieved  fbr
comparatively small  coupling  factor 7  compared  with  the
1O coupled  oscillator  case, [[his is because the natural  angu-

lar frequencies are  more  densely distributed in limited fre-
quency range,  Therefore, a  1arger nurnber  of  coupled  oscil-

lator systems  may  be more  easily synchronized,  theugh the
amplitude  of each  oscilrator is more  suppressed.  It seems
that for r  s O the synchronization  probability curve  con-

verges  to a limiting curve,

    Figures 6(a) and  (b) compare  the synchronization  prob-
ability  in terms  of  7 obtained  by averaging  method  with

that obtained  by direct computer  simulation  for s =  1,O
and  3,O, respectivelyt.  The computer  simulation  results for
s  =  1.0 agrees  well  with  the results of  averaging  method,

This means  that although averaging  method  results is guar-
anteed  for smal1  s  only, in practice, it is applicable  for non-
weak  nonlinear  cases  around  e  =  1.0, However,  when  6

becomes 3.0 these two  results  differ considerably.

    Figures 7(a) and  (b) present the coupling  factor lt ver-

   
'TIn

 our  cornputer  simulation,  many  randomly  chosen  initial
values  are  given to Eq. (2) and  we  compute  the probabiljty for the
steady-state  solution  converging  to  the same-phase  solution.  For
s  ) 1.0, it seems  that other modes  except  the same-phase  become
unstable,

   '
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n.2

1

o.s

O.6

O,4

O,2

o

1,2

1ta･==

 O,BREN

 O.6oZ

 o,4bemO.2
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oe.2  o.4 o.6 e.s

            Y

      (a) 7' =
 O.lx

11.2  1.4

oO,2  O.4 O,6 O.8

            Y
       (b) Y  =  O.

1 12  1,4

Fig. 7 Synchronizution probability in terms of  7 among  10 coupled  os-

cil]ator  case  for various  values  of  r  for (a) 11 =  O.l 1,; {b) T,' =  O (lineaT
coupling  case).

sus synchronization  probability for (a) 7' =  O,17 and  (b)
71 =  O. In these  figures, we  investjgate the effect of  nonlin-

ear  coupling  factor 7' ii or1 =
 7S =

 
･
 
･
 
･
 =  1{k･ When  7' =  O,

synchronization  can  not  be achieved  below r =  O.8, How-

ever,  for 7' =  O,17, it is achieved,  at least, above  r  =  O,6.
Further for 7' =  7, it is achieved  above  r  s O (in Fig.4),
From  these results,  the origin  of  strong  synchronization  of

this coupling  scheme  exists in the nonlinear  coupling  term

for such  a  1arge number  of  coupled  system.

5. Conclusions

The  averaged  equation  for an  arbitrary  number  of  oscil-

lators coupled  by nonlinear  coupling  scheme  invented by

S. Nagapo, js derived. By using  the averaged  equation,  we

investigate the synchronization  characteristics  of  five cou-

pled oscillators and  a large number  of  cQupled  oscillators.

In particular, we  present the  statistical  property ef  coupled

oscillators  in terms  of  coupling  factor 7. Asaresu]t, it is
confirmed  that there  is a  critical coupling  factor 7. above

which  synchronization  can  be achieved  for any  combination

of  natural  angular  frequencies for a  fixed r  which  detemines
the range  of  natural  angular  frequency distribution. We  also
investigate the  origin  of  this strong  synchrenization  scheme.

Tb do this, we  reduce  the effect of  nonlinear  coupling  fac-

tor as 7' =  O.17 and  7' =  O, and  find that these two  cases

show  qualitatively difFerent synchronization  characteristics.

Namely, the 7' =  O.17 case  can  achieve  synchronization

for fairly smal1  values  of  r. In contrast,  the  7' =  O case

can  achieye  synchronization  for r z O.8 only. Namely, syn-
chronization  abi]ity  becomes stronger  by adding  even  small

nonlinear  coup]ing  term. As a  future problem, we  will  in-
vestigate  real  slime  dynamics by using  this equation.
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Appendix A:Van  der Pol Equation

Assuming the cubic  nonlinearity  for NC,  i.e., iNc =  -eiv +

g3v3,ei,g3 >  O in Fig.A･ 1, Kirchhoff's current  law gives
fo11owing equation:

    ifvdt+C:1 -giv+g3v3  =O  (A l)
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v

itic iNCNC

L c

                     =

fig. A･ 1 A  van  der Pol electric circuit where  L is the inductance, C is
the capacitance,  and  NC  is the nonlinear  conductance.

Talcing the time derivative of Eq, (A･ 1), we  obtain  the fol-
lowing equation,

    :li;2V - f/ a-  
3g9i3

 v2) Zil + iliv=o (A･ 2)

By changing  the variables  as:

   v =  vox, vo = Vllllii, vl iit= 
cot'

   ..  g, .VIIi  (A. 3)

van  der Po] equation  can  be derived as  Eq. (1).

Appefidix B: Deriyation o £ the Function hk in Eq. C6b)
            N

   hk(y,Y) =  Z gk,g,(x,k)1 ..ky

            s=1  S=ny

          =  S.i qkstus(xs +72 IX.i xi)
2dr,

 
..py

                                 s=fy

                                      (A･4)

Next,

   xs + itg #.i xi =  li,III.i psmym + vg 
.Zi.

V

i(#.i
 pim) um

              = il
N

ll=l (p,. + lt2 #.1 pl.)y.

                N

              =Zasmy.  (A･5)
               m=1

where  a,.  is defined in Eq,(6c),
Fumher,

        N

    drs=Zpsmem  (A･6)
       mtl

Combining Eq. (A･ 4)-(A- 6), the imction hk(y, Y) becornes
as  fo11ows:

  hk(y,s) =  Z,l.] qk, (.Zi.

V

ia,.y.)

2

(2
N

ll.i p,. e.) ca,

    IEICETRANS.FUM)AMENIALS,VOL.E90TA,NO.1eOCTOBER2007

          N

        =  Z eks(asly! + a,2u2  + ･ ･ ･ +  a,NuN)2(p,1el

          s.1

         +  p,2e2 +  
･
 
･
 
･
 +  p,NeN)tti,

        =IX.lqkscvs(.Zl l

V

.ltr.lmZI.lasmlasm2psm3umlgm2em3]

          NNN

        =  Z Z Z b(k,ml,m2,m3)um,ym,em,
         ml=tm2=lml=1

                                      (A･7)    'where

 b (k, mi,  m2,  m3)  is defined in Eq. (6c),

AppendixC:  DerivatienoftheAveragedEquation(8a)
                                    '

Defining utk =  9kt +  ek, the averaged  equation  forPk can  be
  ,wrltten

 as:

        s

   Pk 
=

 fill <fik(Y,Y)COSPk>

      =  Z{ ( S.1 ekw191 <cos ut! ･ cosek>

    
-
 
.ZN,

 
=1

 
.ZN,.1

 
.ZN,.l

 b(k,ml, m2,  m3)p.,p.,p.,  fl., ･ Avl)

                                     (A･8a)

where

   irv1  E  <sin gijm, 
･sin

 sbm, ･cos ttirn,･cos -frk>, (A･ 8b)

11he term  <cosuti-cos ek> becornes 112 fbrl =  k, because

<cos2 utk> =  <1!2 +  112 cos  2ek> =  lf2, otherwise  it is zero

for all t l k. Next, we  will  calculate  IWi, Although there
are many  cases,  the non-zero  cases  are limited to the fo1-
lowing two  cases, if the non-resonant  condition  Eq.(9) is
satisfied.  

'

   case1  : mi  =m2  ;k,k=  m3  :

     AVi =  <sin2 tbm,･cos2 tuk>

         =  (i - i COS  21fr., + t cos 2sbk
           

-k
 cos (2tfrm, 

-2bfrk)
 
-
 g cos (2bbm, +  2"bk))

           1

         
=Z

 (A･9a)

   case2:  mi  =  m2  =  m3  =k:

     Ayl .  <sin2 ek . c.s2 wk> .  (g - g cos4utk)  =  e
                                     (A･ 9b)

TherefOre, the averaged  equation  for Pk becomes as Eq. (7).                           ,
    Next, the averaged  equation  fbr ek can  be written  as :

    . -E

   ek 
=

 g,p, <.ti(y,e)sinek>
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=  g-k;k (#.1 eklplnl <costLrl smefk>

  N  N  N

-Z
 Z Z b(k,mi,m2,m3)pm,pm,pm,9ni,

 rnl=1  rn2=1  ms=1

where

AV2!i <sin utrni 
'sin

 -ij., 
･
 cos  ger., 

･
 sin Lfrk> .

AV2)(A-1Oa)

(A･ 10b)

The term  <cosuti･sinek> is equal  to zero  for al1 k and  l.
The term AY2  becomes zero  fbr al1 possible combinations
of  mi,  m2,  m3  and  k, if the non-resonant  condition  Eq. (9) is
satisfied, Therefore, the averaged  equation  for ek becomes
as Eq, (7).
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