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SUMMAR\  This letter presents the results of an  analysis

concerning  the global, dynamical structure  of  a second  order

phase-locked loop (PLL) in the presence ofthe  continuous  wave

(CW) interference. The  invariant manifolds  of  the PLL  equa-

tion are  focused and  analyzed  as to how  they  are  extended  from
the hyperbolic periodic orbits.  Using the Melnikov  integral

which  evaluates  the distance betwccn the  stable  manifolds  and

the  unstable  manifolds,  the  transversal intersection of  these

manifolds  is proven to occur  under  some  conditions  on  the

power  of  the interference and  the angular  frequency difTerence

between the signal  and  the interference, NumericaL computations
were  performed to confirm  the transversal intersection of  the

systern-generated  invariant manifolds  fbr a  practical set of  param-
eters.kay

 words:  phase-tbcked loop, CPV  intederenee, Mbinikov ana-

ysis

L  Introduction

In today's coherent  communication  systems,  phase-
locked loops (PLL's) are  used  extensively  for
demodulation  of  the signal.  In such  systems,  many

users  always  coexist  in the sarne  frequency channel  for
communication.  Consequently, perfbrmance ofPLL's

in the presence of  the continuous  wave  (CW) interfer-
ence  is a problem of  practical interest, and  has been
studied  by many  authors.

    From  the viewpoint  of  nonlinear  dynamical sys-

tems, this problem  has been investigated by Endo  and

Iizuka [1], Endo, Matsubara, and  Ohta  [2], Endo  and

Suzuki [3], recently  by Oie, Iritani, and  Kawakami  [4],
and  Takahashi [5], The  earlier  work  by Endo  and

Iizuka [1] clarified  the  tracking  performance of  PLL  by

studying  the periodic solution  via  the harmonic  bal-
ance  method,  Moreover, they  showed  that  in the initial

phase plane, a  complex  basin boundary  is formed
between the basin of  a  periodic solution  for the signal

and  the basin of  another  periodic  solution  for the

interference, when  the interference is suMciently  large,

Adding  to this  phenomenon,  long transients to the

stable  fixed point (i,e., lock-in of  PLL)  are  often

numerically  observed  under  some  set of  parameters and

initial states. The  works  [1]-[5] have investigated the
tracking  behavior to the signal  or  to the interference in

detail. However,  the mechanism  behind these  complex

 phenomena  has not  been fu11y elucidated,
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   This situation led to the  present work  which

analyzes  the mechanism  of  these complex  behaviors by
focusing the  geometric structure  of  the invariant  mani-

folds. Te do so, we  applied  the MelnikoVs method  to

the problem  by utilizing  the presence of  small  parame-
ters, As  a result  of  the analysis, the transversal intersec-

tions of  the invariant manifolds  is proven to occur

under  some  conditions  on  the  power  ofthe  interference

and  the angular  frequency difference between the sig-
nal  and  the interference. In addition,  we  numerically

confirmed  the transversal intersection of  the system-

generated invariant manifolds  for a  practical set of

parameters.

2. PLL  Equation  in the  Presence  of  CW  Interfer-

   ence

When  the  desired signal  s(t)  takes  the fbllowing fbrm,

    s(t) =S  sin  at, (1)

the CW  interference I(t) can  be described by

         N

    I(t) ==Z  Ii sin(w+  yi) t, (2)
         ir-1

where  ui denotes the angular  frequency difference

between the  desired signal  and  the i-th mode  of  the

CW  interference, Hence, the received  signal  is the sum

of  s(t)  and  I (t), while  the output  v(t)  at the voltage-

controlled  oscillator  (VCO) can  be described by

    v(t)=Vcos(cvt+es),  (3)

where  es denotes the phase error  between the  desired

signal  and  the output  at VCO,  Considered here are

PLL's that incorporate a  voltage-controlled  oscillator

 (VCO), a  phase detector (PD) having sinusoidal

characteristics,  and  a  loop filter (LF) comprised  of  a

simple  RC  filter with  transfer function F(S)  
=l/(1

 +  fS),  which  is known  as a lag filter.

    Figure  1 shows  a block diagram ofthe  system,  and

the  fo11owing ordinary  differential equation  (ODE),
i,e., the phase model  [1], describes the dynamics of  the

phase error  th:

    (i+T ddt ) ddatO ==  Kb(g (- e,) + 
,z".,
 R,g (y,t- a)) ],

                                       (4)
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            s(t)+Kt)
                   PD  LF

                      vco.

Fig.1 Block diagram of  a  phase-locked toop (PLL) in the
presence ofa  continuous  waye  (CW) interference.

where  Kb denotes the total loop gain, and  Ri denotes
the ratio  L/S. Let the PD  characteristics  be
sinusoidal,  i.e., g(e)  

=sin
 e, then  the phase model  is

obtained  by applying  the trigonometric identity to (4)
as

    cZ,+ r-ia+  Kb T"i sin th
             N

      +  Kbr-iZRi(cos vit sin 6b-sin vit cos  ca) =O,

            i--1

                                          (5)

By a  scaling  ofthe  independent variable:  t-> (QeqriJ) t,

(5) gives
    --                .
    ca+(1/Q(ii) G)+sin ca
        N

      
-ZRi

 (cos yit sin  ca-sin yit cos  ca)=O. (6)
       1=1

                                  '
  '3.

 The  Melnikov Analysis for PLL  Equation

Denoting th=xi, ca=x2, and  vit=0i,  (6) is given as  a

first order  system  of  ODE

    Xi=x2,  (7a)

    X2 =  
L

 sin xi 
-

 ( 1 / Vlki5T) x2

          N

        +ZRi(cos  ei sin  xi-sin  ei cos  xi),  (7b)
         i--1

    ei=yi, (7c)
where  (xb)c2,ei)E(Ri× Ri× Ti) with  i--1,･･･,IV.
We  concentrate  here the case  of  N=  1, i.e,, a  single  tone
CW  interference, The general case  of  Ar>l  will  be
discussed in the  near  future. Since the forcing term  in

(7b) is periodic with  respect  to  ei, the Poincare sec-
tion can  be defined on  the plane ei=const., where  the
Melnikov's method  can  be applied  to evaluate  the
distance between the  system-generated  invariant mani-
folds [7]. Te  apply  this method,  the simplest  case  ofRi
=:O(E),llV]?iE?=O(E)

 and  yi=O(1)  is primarily
considered  here.

3. 1 Separation of  the  Invariant Manifolds

In the limit of  RnO  and  1/Jier-O,  there  exist  a  pair
of  heteroclinic trajecteries  as in Fig. 2,

   In this limit, the (7a) and  (7b) component

becomes  Hamiltonian system  with  Hamiltenian H=
x22f 2-cos  xi, which  gives the analytic  solution  on  the
mvariant  manifolds  as  fo11ows,

IEJCE  TRANS.  FUNDAMENTALS,  VOL  E77-A, NO,  1r NOVEMBER  1994

Fig. 2field.

X2

:

o ,Ll:--::::::-:-:･elIi:::-:::::-::::!':

e'==o

 =l

e=2T

Heteroclinic trajectories in the three-dimensional  yector

Xl

=2T

    
d
 1D.H(x,±,(-fo),x, ±

,(-fp))11+O(E2),

where

       '

   M'(fp, eo, yi, Kor, Ri)
           '

     ==  
./[:<

 DxH,  g> (x i±h, x  ih) dt,

                    NII-Electronic  Mbrary

Fig. 3 Separation of  the stable  manifolds  ( PVS) and  the unsta-

ble manifold  (MU). .

    x  i
±

h 
==  ± 2 arcsin(tanh  t) ,

    x2'h= ± 2 sech  t,

    ei=yit+0o･ (8)
In addition,  the solution  (xb x2, ei)=( ± rr,O, uit

+  eo) represents  a  hyperbolic periodic  orbit  respective-

ly. When  Ri=O(e)  and  lfV)?5i=O(e),  such  hyper-
bolic periodic orbits  persist and  the invariant mani-

folds from the hyperbolic periodic orbits  generically
separate  into the  stable  manifblds  ( PVS) and  the  unsta-

ble manifblds  ( or") as in Fig. 3.

   The  distance d between these manifolds  depicted
in Fig. 3 can  be evaluated  via  the  Melnikov integral M
by

     -  M'(fp, 0o, vi, Kb  r, Ri)
                                         (9)

(10)
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with  D.H=(sinxi,x2,O) and  g=(O,-(1IV)}iJir)x2

+Ri(cos  ei sin  xi-sin  0i cos  xi),  O) , <, > denotes the
inner product ofthe  vectors.  Since (7) is not  invariant

under  the transformation:  (xi, x2)-(-x"  -x2), M'
=M-  does not  necessarily  hold. M ±

 can  be expressed

by the sum  of  the  following integrals as

    M ± (fo, eo, vi, KbT, Ri)

      =:  II: 
-
 vvkEirx ,±, ( t -  a,) 2dt

       + 1: Rix 2±h (t- fo)cos ei sin x  i±h (t- fo) dt

       
-f:

 Rix 2
±
h Ct- fp) sin  ei cos  x 2

±

h (t- fo) dt

      -E+IS+1le,  (11)

in which  k, h, and  h can  be integrated analytically  via

the residue  calculation  (see [6] for a similar  tech-

nique),to  giye the fbllowing

    k=IO.e 
r
 (1/ J)Gi) . ,±, (t- fp)2dt

     ==1:  
-
 (11J)er) 4 sech2  (t- fo) dt

 =-8/&.  (12)

h=IZ  Rix 2'h (t- fo) cos  0i sin x  i
±

h (t- fo) dt

 -  
.[Z

 -4R,  8.` g,h,(i-t,))
   ･sin yi (t- fo) sin(yi  fp+ em) dt

 ==  
-4Ri{flvi2/(2

 sinh  rrvi/2)}sin(vifpt  0o). (13)

le ==  Y[i: 
uRix

 ih (t- fo) sin  0i cos  x  2i (t- fp) dt

 ==  
-1:

 ± 2Ri sech  (t- fo)cos vi (t- fo)

   ･sin(vifo+ca)dt

       : ± 4R, gionshh2, 
((
 
tt
 
--
 
fofp))

   'f

   ･cos yi (t- fp) sin(yi  fo +  ca) dt

 =:F2Rinsinh(rrvi/2)sin(vifo+th)

   ± 4Ri{n(1 -  yr) / (2 cosh  nvi/2)  }sin (vi fo +  a)) ･

                                     (I4)

Hence,M ±

M ± =-

is given by

  8VIimr

+nRi(
± 2(1-y,2) 2v,Z

      cosh(rrvi12)  sinh(rryi/2)

F2sinh(nvi!2)]sin(yifp+es), (15)

while

    lD.H(xii(-fo),xihC-fo))11

      ==2  sinh2(-fp)+cosh2(-fo)/cosh2(-th)

      ==2  cosh2fo/cosh2fp>O  (16)

holds. From  (15) and  (I6),it suMces  that we  check  if

the Melnikov  integral M  has the simple  zeros  to

determine if the transversal intersection of  the stable

manifolds  (PVS) and  the unstable  manifolds  (MiU)
occurs.  The  assumption  vi=O(1)  comes  from the
fo11owing reasons.  To  evaluate  the distance d between
PVS and  PV" via  the Melnikov  integral, L, h and  k in

M  must  be O(E)  respectively,  as  in (9). However, if

we  consider  a  large value  of  yi, e,g.  yi=O(11e),h

and  the term  4Ri{rr(1-yi2)/(2cesh rryi/2)}  in ts
becomes  O(e-iie) ,

 being smaller  than  any  power  of  E.

If we  consider  the case  of  yi=O(I),  Ri=O(E)  and  1/

Vjfi ==  O(E),it is realized  that this diMculty does not
occur  (Theoretical breakthrough on  this diMculty has

been  made  by Holmes, Marsden  and  Scheurle [8]).

3. 2 Geometric Structure of  the Invariant Manifolds

Since a  second  kind of  periodic solution  correspond-

ing to the interference signal  may  appear  in the upper

half plane of  (xi, x2),  we  focus our  attention  to the

upper  half plane here. Using the Melnikov integral

given by (15), we  can  consider  the geometric  structure

ofthe  invariant manifolds  PVS and  PVU, It is realized

that (15) is the sum  ofthe  constant  term  
-8fwt

 and

the  oscillating  term  whose  amplitude  is -Ri  2(1J  y?)/

cosh(-yi/2)  -2y;/sinh(nyV2)  -2sinh<rrvi/2)  .

Hence, the fo11owing proposition holds.
Propositien 1; For parameters satisfying  Ri=O(e),  1/

VIII=O(e) and  yi=O(l),  there exists  a critical

parameter Rc such  that the fbllowing holds:

(a) For Ri<Rc,d<O  (Vfo, ca), i.e. WS  and  PVU

separate.

(b) At Ri=R,,  d=O  (] fo, 6h), i.e. the heteroclinic
tangency  occurs.

(c) For  Ri>Rc,M(fo,  ca) has the simple  zeros,  i.e.,

the transversal intersection of  PVS and  MU  occurs.

    Proposition 1 leads the fbllowing conjecture:

When  the  angular  frequency difference between the

signal  and  the interference is small  but finite (i.e., vi=

O(1)) and  the PLL  is low damping  
'(i.e.

 1/VIilJir=

O(E)), complex  dynamics  such  as long transients to

lock-in and  the fractal basin boundary might  appear,

due  to the transversal  intersection of  the system-

generated invariant manifolds.

3.3 Numerical  Results

To  verify  the validity  of  the above  conjecture  in the

read  problern, we  performed the  numerical  integration
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Fig,4 Numerically obtained  invariant manifolds  PVS and  }V"

for a  practical set  ofparameters:  l/VjE5ii= O.Ol, Ri=O.08  and  vi
=O.8.
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Fig. 6 Numerically obtained  PVS and  M"  fbr 1!Jiei7=O.Ol, vi
=[O.8  and  R]=O,02,
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Fig. 5 Numerically obtained  MS  and  PVU for lfV)riii==O.Ol, yi
=O.8  and  Ri==O.Ol.

of  the system-generated  invariant manifolds  PVS and

PVU for a  practical set ofparameters,  We  used  the 4th

Qrder  Runge-Kutta  integration scheme  with  integration
step  at O.Ol, 1400 initial points on  the Poincare section
ei==O were  set respectively  along  the eigenvectors

associated  with  the stable  and  the unstable  manifblds

fl;om a  hyperbolic periodic Qrbit.  The  result  in Fig, 4
confirms  the  transversal intersection of  PVS and  PV" on

the section  ei=O, for a  practical set of  parameters 1!
wt=O.Ol, Ri=O,08, and  vi=O,8,  The  result  in Fig.
5shows  that WS  and  PVU are close but separate,  while-

in Fig.6 the intersection of  ewS and  MU  can  be
identified. Hence, the heteroclinic tangency  is suggest-
ed  to occur  between Ri=='O.Ol and  Ri=O.02  with  1/
VIkiir==O,Ol and  vi==O.8.  The  theoretical value  ofthe

critical  parameter Rc is obtained  from the equation

    
-
 xi , +  7rRi(  ,,2,(hiinvYi)2)

      
"
 smh?f;'  

,f2)
 
-2

 sinh(rrui/2))==o,  (l7)

with  1/V)liff7=O,Ol and  vi =O,8,  as R.=O.O06990. The
discrepancy between the theoretical and  experimental

value  of  Rc is considered  to due the  finite value  of  lf
vfi,

4. Conclusions

In summary,  this  letter reports  the analytic  and  numeri-

cal  study  on  the geometric structure  of  the invariant
manifolds  in PLL  in the presence of  a  weak  CW
interference. The  transversal intersection of  PVS and

ifU is proven to occur  under  some  coditions  on  the
system  parameters via  the Melnikov  integral, while  the
existence  of  the transversal intersection of  these invar-
iant manifolds  was  confirmed  numerically  for a practi-
cal  set of  parameters. These results  are  considered  to

provide an  understanding  of  the complex  phenomena
onset  of  PLL  in the presence of  a  weak  CW  interfer-
ence.  Although  the  Melnikov  homoclinicity condition
does not  guarantee the existence  of  a chaotic  attractor,

complex  dynamical properties such  as  the  fractal basin
boundary  or  extremely  long transients is expected  to
occur.  These  will  be discussed in the  near  future,
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