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Abstract – Synchronisability of limit cycle oscillators has been measured by the width of the
synchronous frequency band, known as the Arnold tongue, concerning external forcing. We clar-
ify a fundamental limit on maximizing this synchronisability within a specified extra low power
budget, which underlies an important and ubiquitous problem in nonlinear science related to
an efficient synchronisation of weakly forced nonlinear oscillators. In this letter, injection-locked
Class-E oscillators are considered as a practical case study, and we systematically analyse their
power consumption; our observations demonstrate the independence of power consumption in the
oscillator from power consumption in the injection circuit and verify the dependency of power
consumption in the oscillator solely on its oscillation frequency. These systematic observations,
followed by the mathematical optimisation establish the existence of a fundamental limit on syn-
chronisability, validated through systematic circuit simulations. The results offer insights into the
energetics of synchronisation for a specific class of injection-locked oscillators.
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Introduction. – Synchronisation (injection locking)
of oscillators to an external forcing (injection signal) of
widely different waveforms is often used to provide means
for communicating among oscillators or linking between
oscillators and their surrounding environment. In many
branches of science and engineering, methods for efficient
synchronisation, including explosive synchronisation [1],
have been developed in recent years because synchronis-
ability plays a prominent role in functioning of engineered
systems and even in the social sciences [2]. The syn-
chronisability is measured by the width of the Arnold
tongue (cf. [3], p. 52); that is, the locking range (syn-
chronous frequency band for the external forcing) in which
the injection-locked state is maintained. During injection
locking, the extra power is consumed through the injec-
tion of external forcing and this extra power is a matter of
practical importance, for instance, in battery-limited elec-
trical oscillators (e.g., heart pacemakers). However, there
seems to be insufficient knowledge on this extra power; as
far as the authors know, even for the widely known van

(a)E-mail: htanaka@uec.ac.jp (corresponding author)

der Pol oscillator, the extra power for maintaining injec-
tion locking has not been documented, despite of its long
history. Motivated by recent studies conducted from a
thermodynamic paradigm that clarify the thermodynamic
uncertainty relation of the noisy van del Pol oscillator [4]
as well as the energetics of the Stirling heat engine [5,6],
coupled microscale phase oscillators [7], and a synchro-
nising oscillator model [8], this study aims to provide an
alternative, deterministic viewpoint on the energetics of
injection locking, which is based on the observation from
an existing practical electrical circuit.

Several recent studies have initially articulated the en-
ergetics of synchronisation from a stochastic thermody-
namical viewpoint. For instance, [8] developed a general
approach that unifies modelling and theoretical analysis
for circadian systems. Notably, in their mathematical
model and theory, the power consumption of the oscil-
lator itself is independent from the extra power maintain-
ing its synchronisation, which is hypothesised to relate to
the amount of adenosine triphosphate (ATP) consumed
throughout the oscillation cycles. Meanwhile, [7] first
clarified the generic mechanism intrinsic to the mutually
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coupled fluctuating phase oscillators with fixed circular
trajectories. Interestingly, as in [8], the power consump-
tion of the oscillator itself is separated and independent of
the extra power for mutual synchronisation (cf. eq. (24)
in [7]).
As opposed to these microscale systems in which

stochastic thermodynamics becomes essential, how can
the energetics of synchronisation be developed in deter-
ministic systems? The van der Pol (vdP) oscillator is
an example for such deterministic systems, for which van
der Pol first observed injection locking [9]. The equation
for the vdP oscillator, derived by van der Pol himself, is
simple, but the analysis of its power consumption is not
straightforward due to nonlinear resistance in the oscil-
lator. As opposed to the vdP oscillator, Class-E ampli-
fiers/oscillators, which have been widely used as power
circuits [10–12], might be exotic to physicists. However,
the Class-E oscillators are suitable for theoretical as well
as numerical analysis of power consumption from the fol-
lowing reasons: i) Their power consumption analysis is
straightforward because all the circuit elements are linear
except for a single transistor; this transistor can be mod-
elled as an ON/OFF switch in the working condition of
this study. ii) Their nonlinear dynamics has been system-
atically analysed; a circuit experiment, numerical circuit
simulations, and a phase reduction (to the phase equation
below) have been confirmed to provide consistent results
under various parameter settings [11,12]. This suitability
for analysis motivated us to develop a case study concern-
ing the energetics of synchronisation and a fundamental
limit of synchronisability.
In this letter, we consider the extra power consumption

required to maintain injection locking and address the fol-
lowing two problems that have been beyond the scope of
the previous studies including [11,12].
Question 1 : Can the power consumption of the os-

cillator itself and the extra power required for synchro-
nisation be separated? Namely, is the extra power
maintaining synchronisation given independently of the
power consumption of the oscillator as it was in the
energetics of [7,8]?
Question 2 : Within a relatively small extra power bud-

get for synchronisation, is it possible to maximise the syn-
chronisability of the oscillator? Similarly, is it possible to
minimise the extra injection power to achieve a certain
level of synchronisability? Namely, does a fundamental
limit of synchronisability exist for this particular example?
The answers to these questions are given as Answer 1 and
Answer 2, respectively, at the end of this letter.

The rest of this letter is organised as follows. First,
to answer the above questions, we provide a basic expla-
nation of the circuit. Second, the power consumption in
the oscillator itself and that in the injection circuit added
to it are then systematically analysed through careful cir-
cuit simulations. Third, the simulation results demon-
strate that these two power consumption sources can be
treated separately in the injection-locked state; this en-

Fig. 1: The circuit system analysed in this study. (a) Injection-
locked Class-E oscillator; the Class-E oscillator (main circuit)
receives the injection signal (vinj) through Rinj and Cinj .
(b) Equivalent circuit; the MOSFET is effectively modelled
as an ON/OFF switch. (c) Power flow; the shaded (blank)
arrows indicate the power flowing into (out of) the circuit.

ables us to theoretically derive the optimal injection cur-
rent waveform that maximises the locking range with the
aid of the optimisation method in [13–15]. Thus, the fun-
damental limit of this synchronisability is proven to exist.
Finally, we verify, through systematic, numerical analysis
and experiment, that the theoretically determined opti-
mal injection current is indeed optimal, which validates
the existence of the fundamental limit.

Injection-locked Class-E oscillator. – We show,
in fig. 1, the injection-locked Class-E oscillator [10–12],
which is made up of a Class-E oscillator (the right part in
fig. 1(a)) and an injection circuit (the left part in fig. 1(a));
first, the circuit elements of the Class-E oscillator are as
follows: i) DC-supply voltage VDD, ii) DC-feed inductance
LC , iii) switching devise S; the metal-oxide-semiconductor
field-effect transistor (MOSFET) with rS and gate thresh-
old voltage Vth, iv) shunt capacitance CS , v) series res-
onant circuit L0-C0-R, vi) voltage-dividing capacitances
C1 and C2, vii) feedback inductance Lf for phase shift-
ing, and viii) resistors Rd1 and Rd2, which are used to
supply the bias voltage from the gate to the source of
the MOSFET. These resistances are sufficiently large to
keep the current through them negligible. In addition, for
simplicity, we set rLC

= 0Ω, rL0
= 0Ω, and rLf

= 0Ω,
as in [12].
Second, the injection circuit is a simple RC circuit1,

as shown in fig. 1(a) and (b); we set Rinj = 20 kΩ and
Cinj = 0.1μF, similar to the ones in [12], in this study.

1This circuit configuration is similar to that of the membrane
voltage clamping used to measure the membrane potential of neurons
and cardiomyocytes in which Rinj is also large and Cinj is small [16].
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Third, the circuit parameters in this study are tuned
to almost the same values as those in [12], which were
confirmed to satisfy the zero-voltage switching (ZVS)
and zero-derivative switching (ZDS) conditions. These
ZVS/ZDS conditions, which are essential for reducing
the power consumption in the switching MOSFET effec-
tively to zero, are detailed in sect. (A) of the appendix in
the Supplemental Material Supplementarymaterial.pdf
(SM).

Power consumption in each part of the oscilla-
tor. – In what follows, first the power flow in the circuit is
considered; we start from analysing each power consump-
tion at the resistor Rinj in the injection circuit in fig. 1(a)
and those at the five resistors R, rg, Rd1, Rd2, and rS
in the main circuit shown in fig. 1(b) are obtained subse-
quently. Next, we clarify that the power consumption in
the main circuit is dependent upon the synchronised os-
cillation frequency under injection locking, where the os-
cillation frequency is synchronised to the frequency of the
injection signal. To this end, we observe that two metrics
—the injection power (Pinj in eq. (3)) and total power
consumption in the main circuit (Ptot)— are independent
and separate.
To begin with, we denote T (= 2π/Ω) s and Ω rad/s as

the injection-locked oscillation period and the frequency
of the injection signal, respectively. In addition, ω is the
natural frequency of the free-running oscillator (without
injection signal) and the frequency detuning Δω ≡ ω − Ω
is the difference between them. The circuit equation,
which has been provided in [10], is obtained from stan-
dard nodal analysis for the equivalent circuit illustrated
in fig. 1(b); all the circuit parameter values are listed
in table B.1 in sect. (B) in the SM, which satisfy the
ZVS/ZDS conditions. For the numerical integration of
the circuit equation, we employed the fourth-order Runge-
Kutta method with time step Δt = 2π/(2000ω) (� 3.1 ns)
in this study. The source code in C used to define the
circuit equation and the circuit parameters is provided in
the supplementary file function.c.
We start by considering the power flow in the main cir-

cuit (the right part in fig. 1(c)). Hereafter, we use the

abbreviation: 〈〈·〉〉 ≡ (2π)−1
∫ 2π

0
·dθ with θ ≡ Ωt, and we

define the norm by ||f ||2 ≡ 〈〈f2(θ)〉〉 1
2 for any function f ,

with ||f ||2 < ∞. Then, in the injection-locked states, the
power Pmain supplied from the DC voltage source (VDD) is

Pmain =
1

T

∫ T

0

ic(Ωt)VDDdt = 〈〈ic(θ)VDD〉〉.

In contrast, the power consumption Pout (output power)
at the resistor R is

Pout =
1

T

∫ T

0

R−1v2o(Ωt)dt = R−1〈〈v2o(θ)〉〉.

Power dissipation in other resistors rg, Rd1, Rd2, and rS is
obtained similarly. Furthermore, the power Psub supplied

from the injection circuit to the main circuit is

Psub = 〈〈iinj(θ)vf (θ)〉〉. (1)

Let Ptot be the sum of the power dissipated by the above
five resistors in the main circuit, which is equal to the
power supplied to the main circuit (Pmain + Psub). Then,
Ptot = Pmain + Psub always holds; note that the values
of Ptot, Pmain, and Psub obtained from numerical circuit
simulations in table B.2 satisfy the relation Ptot = Pmain+
Psub with high accuracy, which verifies the validity and
correctness of the circuit simulations.
Next, we consider the remaining power flow in the injec-

tion circuit (the left part in fig. 1(c)); i) in the injection-
locked state, the power Pvinj

supplied from the injection
voltage vinj to the injection circuit is

Pvinj
= 〈〈iinj(θ)vinj(θ)〉〉. (2)

ii) Similarly, the power consumption Pinj at the resistor
Rinj is

Pinj = 〈〈i2inj(θ)Rinj〉〉. (3)

iii) Psub, which amounts to the power supply Pvinj
mi-

nus the power consumption Pinj in the injection circuit,
is supplied to the main circuit. Then Psub = Pvinj

− Pinj

always holds; the values of Pvinj
, Pinj , and Psub obtained

from numerical circuit simulations in tables B.2 and B.3
of the SM satisfy Psub = Pvinj

− Pinj with high accuracy.
Figure 1(c) summarises the power flow in the circuit de-
scribed above.
Finally, as shown in fig. 2 (and fig. B.2 in the SM), the

input frequency Ω dependence of the power consumption
in the circuit is analysed using numerical circuit simula-
tions; we vary Ω centered at Ω/2π = ω/2π = 1.979MHz,
i.e., Δω = 0. For each value of Ω, by controlling the
magnitude of iinj , the power consumption Pinj in the
injection circuit is set to a constant value; in eq. (3)
with Rinj = 20 kΩ, by setting 〈〈i2inj〉〉 = 4.5 × 10−8,

Pinj = 9.0 × 10−4 W (= 4.5 × 10−8 A2 × 20.0 × 103 Ω)
always holds. Another essential source code in sect. (C)
for generating data in fig. 2 and fig. B.2 is provided in the
supplementary file main.c. In this study, we use the in-
jected current iinj for a sine wave, a square wave, a broad
bipolar pulse wave, and the optimal waveform (eventu-
ally obtained as eq. (13)) satisfying 〈〈i2inj〉〉 = 4.5 × 10−8.
The corresponding waveforms are shown in fig. B.1 in
sect. (B) in the SM. The choice of somewhat broad pulse
(duty ratio 20 (%)) is due to the following reasons: i) The
magnitude of the injected current needs to be reduced to
protect the circuit in practical circuit environments, and
ii) the same broad bipolar pulse has been used in the real
circuit experiments of [12]. The power consumption of
each resistor in the main circuit for each waveform for
Δω = 0 is shown in table B.2 of the appendix in the SM;
for the respective injection currents of sine, square, pulse,
and optimum waveforms, the power consumption in R, rg,
Rd1, Rd2, rS and its sum Ptot, power supply Pmain, and
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Fig. 2: The oscillation frequency dependence of the power con-
sumption in each resistor: (a) R, (b) rg, (c) rS , and its sum
(d) Ptot; (a) is the major part of (d), while both (b) and (c)
are minor parts of (d). “Injection-locked” and “out of lock”
surrounded by dotted lines indicate injection-locked and asyn-
chronous states, respectively. In addition, +, ×, ∗, and �
denote the data of sinusoidal, optimal, square, and pulse wave
injection current iinj , as shown in the SM, in figs. B.1 (a),
(b), (c), and (d), respectively. Note: in the injection-locked
state, the power consumption (averaged over T (= 2π/Ω)) does
not depend on the timing of observation because the system
is purely periodic in T . On the other hand, in the out of
lock (asynchronous) condition, the system exhibits intermit-
tent phase slips (cf. [3], pp. 53, 54, 81–83) and is no longer
purely periodic, which results in a spread in the time-dependent
values of the power consumptions, as observed in the above
graphs.

Psub supplied from the injection circuit to the main cir-
cuit, and Pvinj

supplied by vinj are listed. Furthermore,
fig. 2 (and fig. B.2 in the SM) compare, respectively, the
power consumption of each resistor, Psub and Pvinj

when
the value of Ω is varied in and out of the locking range,
centered at Δω = 0. Note that, for each iinj , the injection
locking is directly observed by comparing the frequency of
the oscillator and the (tunable) frequency Ω of iinj ; the
locking range is uniquely and accurately obtained for each
given magnitude of iinj . Although the power consumption
of Rd1 and that of Rd2 are omitted in fig. 2, they are all
in the order of μW as shown in table B.2 in the SM; they
show the same input frequency dependence as the power
consumption of other resistors.

Observations of total power consumption. –
While scrutinising the results of tables B.2 and B.3 and
fig. 2 (and fig. B.2 in the SM), we made the following
observations (O1) and (O2) on the supposition that the
following conditions (i), ii), iii)) are met: i) weak forcing
(i.e., low injection power Pinj), ii) RinjCinj � (Ω/2π)−1,
and iii) the ZVS/ZDS conditions (i.e., basic circuit design
constraints mentioned above).
(O1) For given various injection currents iinj under the

same low injection power Pinj (= 9.0×10−4 W above), the
power consumption of each resistor R, rg, Rd1, Rd2, and

rS in the main circuit, and their sum Ptot do not show
significant difference for all waveforms of iinj as long as
the circuit is injection-locked, as shown in fig. 2.
(O2) The total power consumption Ptot described above

is specific to the oscillator itself, which depends only on the
oscillation frequency, independent of whether there is in-
jection locking or not. In addition, its oscillation frequency
dependence shows only a relatively small change for this
particular Class-E oscillator; see fig. C.1 and details in
sect. (C) of the appendix in the SM.
Viewed from the general theory of limit cycle oscillators

under weak forcings [17,18], the above (O1) and (O2) seem
natural and consistent with it; the oscillation waveform
(i.e., oscillation state) of a limit cycle oscillator synchro-
nised to a weak forcing (i.e., a weak perturbation f(Ωt)
in Γ(φ) below of the order O(ε)) will be only slightly de-
formed by at most O(ε) compared to its original oscillation
waveform without forcings. Then, the observations (O1)
and (O2) can be summarised as follows: i) The power
consumption Ptot of the oscillator itself (the main circuit)
in the injection-locked state shows only a slight change
from that of the oscillator without forcing. ii) This slight
change of Ptot is attributed to the oscillation frequency de-
pendence of the power consumption in the oscillator itself.
This is because the main circuit, which oscillates at a fre-
quency different from its natural frequency under injection
locking, slightly changes its power consumption depend-
ing on its oscillation frequency (for details, see sect. (C)
of the appendix in the SM).
From the above i) and ii), under a weak forcing, the

power consumption of the oscillator itself (Ptot in fig. 1(c))
and that of the injection circuit (Pinj in fig. 1(c)), which
is additionally required for the injection locking, are given
independently; for any (small) Pinj , Ptot depends only on
the oscillation frequency, and it is not influenced by the
value of Pinj nor by the waveforms of iinj . Therefore, it
is reasonable to analyse the influence of the input wave-
form iinj on its locking range only by setting the power
consumption Pinj to a specific (small) value.

Relationship between injection current and volt-
age. – To analyse the input waveform dependence of the
locking range, it is useful to obtain an equation relating the
injection current iinj and injection voltage vinj in the in-
jection circuit. First, the circuit equation for the injection
circuit in fig. 1(a) is

vinj(t) = Rinjiinj(t) + C−1
inj

∫ t

0

iinj(t
′)dt′ + vf (t). (4)

In eq. (4), of interest is the injection-locked state at the
input frequency Ω/2π (as shown in fig. 1(a)); replacing t
in eq. (4) with θ ≡ Ωt, the periodic solutions of iinj(θ),
vinj(θ), and vf (θ) in Fourier series with period 2π are ob-
tained using the harmonic balance method. See sect. (D)
of the appendix in the SM for details. As a result, we have
the following concise relation between iinj and vinj :

iinj(θ) = R−1
inj [vinj(θ)− vCinj

− vf (θ)], (5)
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where vCinj
is a time-independent constant2. Note that

the condition RinjCinj � (Ω/2π)−1, as shown in sect. (D)
of the appendix in the SM, is naturally satisfied in this
study, which makes the derivation of eq. (5) simpler.
As a result of eq. (5), when the constant part of iinj

is set to 0, i.e., 〈〈iinj(θ)〉〉 = 0, the following relation
holds: 〈〈vinj〉〉 − vCinj

− 〈〈vf 〉〉 = 0. This implies that
vCinj

(= 〈〈vf 〉〉 − 〈〈vinj〉〉) is a constant voltage determined
by the difference in the constant parts of vf and vinj un-
der synchronisation, which is naturally consistent with the
insight obtained from the injection circuit of fig. 1(a).

Proof of fundamental limit by optimal injection
current. – Having observed that the two metrics Pinj

and Ptot are independent (and hence Ptot does not appear
below), and having determined the relation (5) between
iinj and vinj during injection locking, we will now prove
the fundamental limit of synchronisability by directly con-
structing the optimal input waveform of iinj for a given
Pinj in the following steps (i), ii), iii)).
i) As the first step towards this objective, we introduce

the phase reduction method here. In nonlinear oscilla-
tors, including Class-E oscillators in which a weak exter-
nal forcing f(Ωt) is injected, the long-term dynamics of
the injection-locking process can be reduced to the follow-
ing phase eq. (cf. [13,17,18]): dφ/dt = Δω + Γ(φ), where
Γ(φ) = 〈〈Z(θ + φ)f(θ)〉〉, with φ representing the phase
difference between the oscillator and the external signal,
and Δω ≡ ω−Ω denotes the frequency difference between
the oscillator and external signal. Γ(φ) is a periodic func-
tion with period 2π and is called a phase coupling func-
tion. The phase sensitivity function Z(θ) is a 2π-periodic
function intrinsic to the oscillator that indicates the influ-
ence (sensitivity) of the external signal on the oscillation
phase.
It is known that this Z can be obtained using various

methods [18]. Specifically, in the Class-E oscillator shown
in fig. 1(a), both iinj(Ωt) and vinj(Ωt) of the injection cir-
cuit can be selected as the external forcing f(Ωt) above,
and we write the phase sensitivity function corresponding
to iinj and vinj as ZI(θ) and ZV (θ), respectively. In recent
experimental studies of Class-E oscillators [11,12], vinj has
been treated as the external forcing, simply because vinj
is relatively easily controlled in circuit experiments (com-
pared to controlling iinj). Hence, [12] introduces the con-
straint of a given (relatively small) mean square of the
input voltage 〈〈v2inj〉〉 (in eq. (8)). However, this con-
straint does not correspond to the power consumption of
the circuit Pinj (and Ptot) since, apparently, 〈〈v2inj〉〉 	=
〈〈i2injRinj〉〉 (= Pinj).
ii) As the next step toward the fundamental limit, we

need to consider iinj as an external forcing. Now, the ob-
jective is to find the optimal injection current iopt that
maximises the locking range among feasible iinj wave-

2The relation between iinj and vinj in eq. (5) can also be ob-
tained by analytically solving the initial value problem for eq. (4)
and setting t → ∞, but its calculation is lengthy and omitted here.

forms. According to the previous observations (O1) and
(O2), if the power consumption of the input circuit Pinj (=
〈〈i2injRinj〉〉) is constrained to a small, constant value (as
in eq. (6) below), the total power consumption Ptot of the
main circuit under synchronisation is found to be indepen-
dent of the waveform of iinj . Thus, the optimisation prob-
lem of maximising the locking range (≡ L[iinj ] in eq. (9)
below), given as a functional of iinj , makes sense and is
well defined under the following constraints 1 and 2 for
iinj .

Constraint 1: Pinj is a given constant (= MRinj) , i.e.,

‖iinj‖2
(
≡ 〈〈i2inj(θ)〉〉

1
2

)
= M, (6)

Constraint 2: 〈〈iinj(θ)〉〉 = 0, (7)

as opposed to the ones initially assumed in [12]:

〈〈v2inj(θ)〉〉
1
2 = M, 〈〈vinj(θ)〉〉 = 0. (8)

Constraint 2, often called the charge balance constraint,
is required to protect the circuit, in which the net in-
jected charge should be zero. On the other hand, the
objective function L[iinj ] (functional of iinj), i.e., the
locking range, is given by the difference between the min-
imum value Γ(φmin) and the maximum value Γ(φmax) of
Γ(φ) (= 〈〈Z(θ + φ)iinj(θ)〉〉) as determined for any feasible
iinj [12]:

L[iinj ] = Γ(φmin)− Γ(φmax)

= 〈〈[ZI(θ + φmin)− ZI(θ + φmax)]iinj(θ)〉〉, (9)

where φmax and φmin satisfy the conditions that Δωmax+
Γ(φmax) = 0 and Δωmin + Γ(φmin) = 0, and Δωmax and
Δωmin correspond to the rightmost maximum and left-
most minimum of the locking range for iinj , respectively
(cf. [12]). Hereafter, we denote φmin − φmax ≡ Δφ.

iii) As the final step, we introduce an additional param-
eter μ and define a functional J [iinj ;μ] for maximising
the locking range L[iinj ] under constraints 1 and 2:

J [iinj ;μ] ≡ L[iinj ] + μ [〈〈iinj(θ)〉〉 − 0] = 〈〈iinjg〉〉, (10a)

with g(θ) ≡ ZI(θ +Δφ)− ZI(θ) + μ. (10b)

We note that this method for embedding the con-
straint 2 (eq. (7)) into the functional J through the addi-
tional parameter μ was first introduced in [13] and further
developed in [19]; it is useful for solving a certain (convex)
optimisation problem via the Hölder/Cauchy-Schwarz in-
equality. Note that the constraint 1 (eq. (6)) is also em-
bedded in the process of optimisation (12) below, and the
parameters μ and Δφ are finally determined by solving
eqs. (7), (13) for μ and Δφ.
Thus, finding the optimal injection current iopt is re-

duced to solving the following optimisation problem:

maximise J [iinj ;μ],

subject to 〈〈iinj〉〉 = 0, ‖iinj‖2 = M, (11)
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which can be solved with the calculus of variations (as the
Euler-Lagrange equation), leading to the same result as
that we obtain below (cf. [14,15,20]). However, we resort
to the following direct approach from eq. (10), which uses
only inequalities, due to its simplicity and clarity:

J [iinj ;μ] = J [iinj ;μopt] = 〈〈iinjg〉〉 ≤ 〈〈|iinjg|〉〉 ≡ ‖iinjg‖1
≤ ‖iinj‖2‖g‖2 = M‖g‖2. (12)

Here the equality condition: iinj(θ) ∼ g(θ) of the Cauchy-
Schwarz inequality ‖iinjg‖1 ≤ ‖iinj‖2‖g‖2 is essential. By
iinj ∼ g, the iopt realising the upper bound in eq. (13)
must be of the following form (if it exists):

iopt(θ) = Mgopt(θ)/‖gopt‖2, (13)

and this iopt makes all “≤” as “=” in eq. (13), which
implies that iopt is the maximiser of L[iinj ] under con-
straints (6) and (7). Finally, by substituting eq. (13)
into (6) and (7), μopt = 0 and Δφopt = π are uniquely
determined for a given ZI(θ) in fig. 3(a), following the
careful numerical analysis in [13], sect. 6, which implies
that iopt does exist. We note that the solution Δφopt = π
is proven to always exist (cf. [13], below Theorem 1, p.
6; and the “generic solution” in [14], p. 2). Thus, after
plugging (Δφ, μ) = (Δφopt, μopt) = (π, 0) in eq. (10b)
we obtain gopt(θ) = ZI(θ+ π)−ZI(θ), which implies that
iopt in eq. (13) together with the above gopt is the unique
maximiser of J [iinj ;μ]; iopt maximises the locking range
L under constraints (6) and (7). In addition, the corre-
sponding injection voltage vopt(θ) (fig. 3(b), green graph),
which yields iopt in eq. (13), is uniquely determined by the
relation in eq. (5) (with the numerically obtained vCinj

and
vf (θ) in eq. (5), as explained below).

Finally, through numerical circuit simulations, we verify
that the theoretically obtained iopt in eq. (13) is indeed
realised by setting vinj as the theoretically obtained vopt
in the injection circuit in the following manner: First, the
circuit simulations in this study employ the switch model
in fig. 1(b); the timing at which the MOSFET enters the
“ON” state is set to θ = 0, and the timing at which the
MOSFET enters the “OFF” state is set to θ = π, for
simplicity. This makes the phase θ in eq. (5) and ZI(θ) is
uniquely fixed on the θ coordinate; on this coordinate, we
observe that under injection locking, iopt, vopt, and vf , as
shown in fig. 3(b) via circuit simulations, satisfy eq. (5)
with high accuracy. Next, we compare this numerically
obtained vopt with the above theoretically obtained one.
The result shows that they are indistinguishable on the
graph in fig. 3(b), which implies that iopt is indeed realised
in the circuit by injecting vopt.

Verification of optimality. – The optimality of the
injection current iopt and the corresponding vopt obtained
in the previous section is validated in the following two
ways. First, to verify that the optimal injection current
iopt indeed maximises the locking range, the value of the
locking range for iopt is compared with that of the locking

Fig. 3: Verification of the validity of iopt for injected vopt.
(a) Phase sensitivity function ZI(θ) for injection current iinj .
(b) Observed injection current iopt and corresponding injection
voltage vopt and vf . These are obtained through the numeri-
cal circuit simulations, and eq. (5) is verified to be satisfied by
them.

Fig. 4: Distribution of locking ranges for 105 randomly gen-
erated injected currents of iinj . Pulse, square, sin, and opt
in the figure correspond to the cases in which iinj has (broad
bipolar) pulse, square, sinusoidal, and optimal waveforms in
fig. B.1, respectively. Their locking ranges are 1.811, 3.590,
4.024 and 4.028 kHz, respectively. Note that the optimal
waveform (opt) significantly outperforms the pulse and square
waveforms, while it outperforms the sinusoidal waveform only
slightly.

range for the randomly generated, injected current wave-
form; specifically, for iinj (that satisfies the constraints (6)
and (7)) of 100000 fifth-order Fourier series3 with Fourier
coefficients generated by uniform random numbers, the
distribution of the locking ranges is obtained from the
phase equation (fig. 4). As can be seen in fig. 4, the lock-
ing range for iopt is wider than that for any other input
waveform, although the locking range for iopt and that for
the sinusoidal iinj are quite close.

Second, the consistency between iopt in this study and
the previous result in [12] is further verified; the optimal
injection voltage v∗opt, previously obtained in [12] (from
vopt(θ) = Mgopt(θ)/||gopt‖2, similar to eq. (13)) for the
external forcing vinj , has almost the same shape as that
of iopt obtained in this study, because ZI in this study
and ZV in [12] have almost the same shape. Namely, the
optimality of v∗opt in [12] under constraint (8) implies the
optimality of iopt under constraints (6) and (7). For more
detail, see section (E) in the SM.

3Note that the fifth-order Fourier series for iinj are sufficient for
this analysis, because ZI in this study has small magnitude in their
higher harmonics, which implies higher harmonics in the injection
current iinj does not affect Γ in the phase equation: dφ/dt = Δω+
Γ(φ).
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Discussion. – Although this study is conducted for
the injection-locked Class-E oscillator for which power
consumption analysis is easily carried out, the obtained
framework can be useful for analysing other injection-
locked oscillators; for example, the injection-locked CMOS
ring oscillators [21] as well as the vdP oscillator [9], with
a similar injection circuit in this study. This is because
observations (O1) and (O2) are expected for those oscilla-
tors as general properties of synchronous oscillators with
weak forcings [17,18], which implies such a specific class of
injection-locked oscillators is amenable to the framework
of this study. However, we need to be cautious in us-
ing our method for the following technical reasons; firstly,
the power consumption in the injection circuit needs to
be reliably estimated (or controlled to be a small value),
which implies a relatively simple injection circuit (such
as the linear circuit in this study) would be a reasonable
choice. Secondly, the separability of the (low) injection
power Pinj and the total power consumption Ptot in the
oscillator needs to be verified (as in (O1)), which requires a
reliable estimation of Ptot including power consumptions
in the nonlinear elements; the transistor working as the
ON/OFF switch in this study would be an ideal instance.
Finally, as a future study, it is theoretically as well as prac-
tically interesting to consider the implications of the pio-
neering framework in [22] for our particular circuits, where
the feature size of the transistors is scaled below several
nm. In addition, an extension toward energy propagation
on networks [23,24] from our framework is open for future
study.

Conclusion. – This study verifies that the power con-
sumption of the Class-E oscillator and the extra power
required in the injection circuit can be separated, and
shows that the locking range can be maximised under the
constraint of a weak power consumption of the injection
circuit. Specifically, the following findings were obtained
respectively for Question 1 and Question 2 raised at the
beginning of this letter, which characterise the fundamen-
tal limit of synchronisability for this particular oscillator.

Answer 1 : In the injection-locked Class-E oscillator of
this study, the power consumption of the oscillator itself
and the extra power consumption in the injection circuit
are independent and can be treated separately as far as
the injection locking is maintained.

Answer 2 : Under the condition: (RinjCinj)
−1 � Ω/2π,

for a given low injection power, the locking range can be
maximised by designing the optimal injection current iopt
(of eq. (13)), obtained through the optimal injection volt-
age vopt due to the one-to-one correspondence between iinj
and vinj according to eq. (5). It is also immediately ob-
tained from eq. (12) that for this iopt, under a given lock-
ing range (= L[iinj ] = J [iinj ] of eq. (12) since iopt satisfies
〈〈iopt〉〉 = 0), the injected power (∼ M of eq. (12)) is min-
imised. This is because all “≤” become “=” in eq. (12)
which implies iopt minimises M .
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