NOLTA, IEICE

Paper

Better clock synchronization from
simultaneous two skew estimations

Hisa-Aki Tanaka'®, Youjie Ouyang’, Yoji Yabe?l,
Isao Nishikawa!, and Kazuki Nakada'+?

1 Graduate School of Informatics and Engineering, The University of
Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

? The author is currently with Graduate School of Information Sciences,
Hiroshima City University, 3-4-1 Ozuka-Higashi, Asaminami-ku, Hiroshima
731-3194, Japan

@) htanaka@uec.ac.jp
Received December 6, 2015; Revised June 6, 2016; Published October 1, 2016

Abstract: An improvement for clock synchronization in wireless sensor networks (WSNs) is
presented, which is obtained by analyzing a temporal frequency variation observed in inter-
nal clock circuits. Clock synchronization is an essential building component in WSNs for
distributed sensing. Flooding time synchronization protocol (FTSP) is one of the highest-
precision synchronization protocols for WSNs, which has been implemented on certain WSN
testbeds. We carry out systematic experiments of FTSP with a Mica2Dot testbed to under-
stand how synchronization precision is affected by a dynamic frequency variation in the clock
circuit with a button battery. Our observations clarify that the following two elements are
essential for better clock synchronization; (i) a short-term frequency variation in the clock cir-
cuit, and (ii) the resulting error in clock drift (i.e., skew) estimation from the linear regression
in FTSP. Based on these findings, we propose a simplistic improvement for robust and more
precise clock synchronization, utilizing two sets of simultaneous estimations of skew between
sender and receiver nodes. Through systematic experiments and analysis, we confirm this im-
provement realizes a higher synchronization precision in a stable network environment, while
it maintains robustness of time synchronization even in a worst case of unstable networks.

Key Words: clock synchronization, crystal oscillators, wireless sensor network, skew estima-
tion, FTSP

1. Introduction and motivation of this study

Recent advances in electronics and wireless communication technology have made sensing and com-
municating devices smaller, cheaper, and more low-power than before. Such resource-limited devices
(sensor nodes) construct wireless sensor networks (WSNs) for a wide range of distributed sensing
purpose; indoor, outdoor, and even in-body monitoring applications. In such WSNs, precise clock
synchronization often becomes essential because clock synchronization is a basis for consistent dis-
tributed sensing and control. An interesting application is shown in an early study [1] for instance.

548

Nonlinear Theory and Its Applications, IEICE, vol. 7, no. 4, pp. 548-556 (©IEICE 2016 DOI: 10.1587/nolta.7.548



Several distributed algorithms for clock synchronization have been proposed so far [2-4]. Moreover,
a large survey on synchronization protocols in WSNs is now available [5]. Among them, flooding
time synchronization protocol (FTSP) [6] and PulseSync [7] are one of the standard energy-efficient
and high-precision synchronization algorithms for WSNs. Whereas ad-hoc mobile networks with a
dense network topology are assumed in the TEEE 802.11 timing synchronization function (TSF) [4],
both FTSP and PulseSync construct an adaptive tree-like network of sensor nodes, in which synchro-
nization messages [6] (i.e., time stamping packets) are periodically sent from the root node down to
multiple receiver nodes, as exemplified in Fig. 1. As a result, undesirable frequent collisions [8] of
synchronization messages (i.e., timing beacons [4]) are avoided. From these synchronization messages
each receiver node effectively estimates its clock skew (i.e., the speed of clock drift, defined in Section
2) by using a linear regression algorithm in FTSP. A high-precision time synchronization is then
realized even for resource-limited sensor nodes such as Mica2Dot motes [9].

root\ O sender
Si.;receiver
54

Fig. 1. Tree-like network topology in FTSP.

Incidentally, recent studies [10-12] have investigated an intrinsic characteristics of the clock circuit
(i.e., the crystal oscillator) in a dynamic environment. They have demonstrated that the clock skew is
dynamically compensated according to the working temperature. In the present study, as opposed to
such previous work [10-12], we focus on an intrinsic dynamic characteristics of the clock circuit under
a static working temperature and humidity. We then clarify yet another mechanism that degrades the
synchronization precision in FTSP even under a static working environment. The main contributions
of this paper is twofold. First, we analyze the underlying mechanism of our experimental results
for FTSP on Mica2Dot motes, which clarifies that the following two elements play essential roles for
better clock synchronization; (i) a short-term frequency modulation in the clock circuit, and (ii) the
associated error in clock skew estimation from the linear regression in FTSP. Second, based on these
insights, we propose a simplistic improvement of FTSP by utilizing two simultaneous estimations of
the clock skew. With this improvement, the synchronization precision is observed to increase by a
factor of more than several times than the original FTSP, while robustness of time synchronization
is maintained even under a nonstatic, unstable network environment. We note that our improvement
can be useful even in a dynamic environment, since this can be incorporated into the results for such
an environment [10-12].

The remainder of this paper is organized as follows. In Section 2, we review FTSP to explain
how receiver nodes synchronize to the root node. In Section 3, we analyze an underlying mechanism
for the synchronization precision degradation. In Section 4, we propose an effective improvement of
FTSP, and provide systematic performance evaluations through comparative experiments. Finally,
the discussion and conclusions are presented in Section 5.

2. Synchronization mechanism in FTSP

In FTSP, the root node provides a real global time which serves as the standard time in the network.
This global time can be obtained from GPS or other reliable sources. On the other hand, all other
receiver nodes independently maintain the following two sets of times; (i) their own local times,
clocked by the crystal oscillators in each node, and (ii) their virtual global times. The virtual global
time in each receiver node is estimated from its local time by referencing synchronization messages
from a sender node. In the estimation of the virtual global time, delays in synchronization message
transmissions and clock drift between sender and receiver nodes are involved. The compensation of
delays is successfully handled through a detailed analysis of message transmissions for Mica2 motes [6].
Compensation of the rate of clock drift (i.e., skew), on the other hand, is carried out by using linear

549



regression for intrinsic frequency mismatch of clocks in sender and receiver nodes, and for temporal
instability of clocks, simultaneously.

Clock drift is estimated in FTSP in the following way. The original FTSP employs a linear regression
(LR) in a time window of previous eight synchronization messages (SMs). These SMs are periodically
sent at each synchronization point (SP) in a fixed resynchronization period denoted by T', as shown
in Fig. 2. In usual, the value of T is set to 30 seconds [6]. At each SP, the receiver node obtains
the combination of the sender’s time stamp (carried on SMs) and the corresponding local time in
the receiver node at message reception; the sender’s time stamp is given as a virtual global time
estimated in the sender node (or can be the absolute global time if the sender is the root node) at
message transmission. Hence, if the time offset (TO) between the sender’s (virtual) global time (SGT)
and the receiver’s present local time (PLT) is correctly estimated, a receiver node knows the sender’s
global time from its local time.

time offset SE

actual skew ’)J
= time derivative —»- "_<_estimated skew
on this curve bt = increasing rate of L
______ ]<—skew x (PLT-LTA)
< estimated TO
<—O0A

T I A RO
LTA PLT
TO : time offet = sender's global time - receiver's local time
LTA : local time average, OA : offset average
PLT : present local time, RLT : receiver's local time
SE : synchronization error, SP : synchronization point
L : linear regression line

Fig. 2. Schematic of skew estimation in FTSP.

In the estimation scheme described above, FTSP implicitly sets the following two assumptions; (i)
the skew is a constant, and it is estimated from the increasing (or decreasing) rate of the LR line L
in Fig. 2, which best interpolates a set of past (eight) time offsets, and (ii) by using the average of
these past offsets, delays in message transmissions can be compensated. Therefore, FTSP estimates
the receiver’s global time (RGT) as shown in Fig. 2 :

RGT = present local time (PLT) + estimated time offset
= PLT + offset average (OA) + skew x (PLT — local time average (LTA)). (1)

However, if the actual skew temporally increases or decreases in some nodes, the estimation (1) of
RGT should involve a certain amount of estimation error. In fact, such a temporal variation of skew is
a major factor of the synchronization error (SE) as observed in Section 3. To evaluate the amount of
such SEs, here we assume that a skew increases at a constant speed in a short period. We then denote
the time offset of node A’s clock (i.e., SGT) w.r.t. node B’s clock (i.e., RGT) as 04(t), in which ¢ is
the local time in node B [10,12]. Similarly, the skew af(t) is defined as ap(t) = d3(t)/dt [10,12].
Then, we consider the situation where the skew increases (or decreases) at a constant speed Askew.
Namely,

dag;(t)
dt

As shown in Fig. 2 the synchronization error (SE) is defined as SE = SGT —RGT. SGT and RGT at
a local time t; (of node B) are respectively given by their definitions :

= Askew = C. (2)

to+T (=t1)

SGT(t;) ~ t;+OA+ / ap(t) dt, (3a)
to

RGT(tl) = tl + OA + Ckg(to) . (tl — to), (3b)

550



in which to and t; respectively correspond to LTA and PLT in Fig. 2. Subtracting Eq. (3b) from
Eq. (3a), we obtain SE at 1, as

SE(t) z/lag(t) dt—ag(to)~(t1—t0):/1a‘§(t)—a§(to) dt

to to
f C C(n-1,)\"
= [ C-(t—ty)dt=—(t1—t)’ == T 4
Mot = G0 -2 = 5 (B5T) ()
since ap(t) = af(to) + C - (t — to) from Eq. (2) and t; —tg = (ngl)T, where n is the number of data

samples (from SMs) used in the linear regression, as shown in Fig. 2. This formula (4) turns out to
be informative in analyzing SE in Section 3.

3. Analysis of synchronization error

To see how skew and SE behave in a real world environment, we observe and analyze them, firstly in a
stable and static network environment (i.e., Experiment 1), and then in an unstable, transient network
environment due to root lost and root reelection (i.e., Experiment 2); for both environments in a
Mica2Dot testbed, we carry out systematic experiments using Mica2Dot motes which are shipped with
two clock oscillators; a 32KHz crystal oscillator! and a more fine-grained 4MHz crystal oscillator. Here,
we employ this 4MHz oscillator as the clock, because this 4MHz oscillator is used in the experiments
in [6] as well as in the experiments of RBS [2] and TPSN [3].

As explained in Section 2, skew estimation plays an essential role in FTSP. Therefore, firstly, we
observe temporal variations of skew in the following experiment.

Ezxperiment 1: FEight sensor nodes (Mica2Dot motes) form a single-hop network in the high-
performance incubator (Type KCL-2000A, Eyela Co.), in which external radio waves are naturally
shielded, as shown in Figs. 3(a) and 3(b). Until the battery becomes empty in some node of the net-
work, temporal variations of the estimated skews are recorded in all nodes; one of typical data from
a randomly chosen node is shown in Fig. 4(a). To exclude undesired changes in the environments,
temperature and humidity is maintained exactly at 25°C and 30%RH throughout the experiment.

In this experiment, we find the estimated skew alternatively increases and decreases at almost
constant rates as shown in Fig. 4(a). At first, we suspected that this is caused by a possible failure
in this particular node. Then, we repeated the same experiments by using other motes, but all
experiments lead to similar observations. Next, we carried out a control experiment to Ezperiment 1,
in which all button batteries on Mica2Dot motes are replaced with a common stable voltage source
(PMM35-1.2DU, KIKUSUI), to exclude a possible voltage instability from the button battery. In this
control experiment, as we expect, almost no temporal variation is observed in the estimated skew for
all the nodes, and such an observed constant skew is of the same order to the time-averaged skew in
the same node with a button battery. (Data is not shown due to space limit.) Therefore, the observed
temporal variation of skew can be attributed to some internal mechanism of the battery and/or the
clock circuit. In any case this temporal skew variation should affect SE for each node.

Then, to examine the relationship between SE and the window size of linear regression in FTSP, we
repeated Experiment 1 by increasing the resynchronization period T' from its original 30 [s] upto 300
[s]. For each value of T, five trials are carried out for 30T [s]. The time-averaged SE in one randomly
chosen node, which is further averaged over five trials, is shown in Fig. 4(b). A quadratic increase of
SE is observed w.r.t. T. This observation is consistent to the result of SE ~ T2 in Eq. (4) under a
constant rate of skew variations.

Based on the above observations, in the following experiment we further investigate a more direct
relationship between temporal variations of skew and the resulting SEs.

Experiment 2: Eight Mica2Dot motes form a single-hop network for about two hours. The initial
root node is removed from the network at 2451 seconds later from the beginning of the experiment.

!The experiments in [11] are carried out with a citizen CMR200T oscillator running at 32KHz in TelosB motes.
2Note C in Eq. (4) is naturally time-averaged during this observation.

551



3 75

Fig. 3. Experimental setup. (a) A single-hop network in a Mica2Dot testbed.
(b) All experiments are carried out at a constant temperature and humidity in
the incubator.

34 110 w 3.0 (10
@] 3 ) ]
35 \\/ <1C> 20 F A
3 s x"
b T
36 One battery g 10 F - il
: becomes empty. S Ny X
~~ Skew estimation < o b
is started. x10° € X
-3.7 > L - - -
0 4.0 8.0 12.0 16.0 @ 0 60 120 180 240 300
local time [s] resynchronization period T [s]

Fig. 4. Short-term skew variations observed in Experiment 1. (a) Temporal
variation in an estimated skew in one node. (b) Averaged synchronization
errors in one node for several different resynchronization periods. The curve
represents the quadratic function of T fitting data points x.

x10° x10°

1.70 ———————7200 0.00 —— —— 200
root qemoval @ 2451 [s] (a): (b):

. 2] P . [2]
v ‘ — skew m ‘ \ qm

1.69 | T — SE |& 001} 002><10 —\ | &

3 31/ 3
g 0.02 x10"= 7_ rootrem[c;i/al‘ 100 g ] 210‘ [S] \,i 100

1.68 [ _ _! i 219']‘_31 _____ /1505 -0.02 - 1““” ‘W ‘1 52.5
M, M- Hw Wv {MW, L’WW'l g ,jww Wl‘ﬂi‘ L WHM WL' &r,

1.67 L 0 -0.03 0
x10° 200 2000 3000 4000 5000
[—— 7 ) ) Tyt local time [s

0073 f i 1 ©: |o Is]

s g
0.071 b T ol b
z 005v><105—*“_ ;1100
% ' - H
0.069 | 5/ 1/210[5] . J
o D Al e e 13,1
0

0.067
2000 3000 4000 5000

local time [s]

Fig. 5. Temporal skew variation and the associated synchronization error
(SE). (a) Data from node A. (b) Data from node B. (c) Data from node C.

Then, the newly reelected root node is removed at 4830 seconds later from the beginning. Temperature
and humidity is maintained exactly at 25°C and 30%RH throughout the experiment.

Figures 5(a), (b), and (c) respectively shows a temporal variation of the estimated skew and the
associated SE in three randomly chosen receiver nodes; node A, node B, and node C. We note that
four other receiver nodes show a similar temporal variation of the skew. In Fig. 5, we observe the
skew keeps decreasing at an almost constant rate respectively in node A, B, and C, for about 2,400
[s] between two events of root removal at 2451 seconds and 4830 seconds respectively, and the rate of
skew variation is altered before and after the root removal and reelection.

More precisely, we observe that node A, node B, and node C respectively shows about 0.02 x 104,
0.02 x 1074, and 0.05 x 1075 decrease in skew during a time laps of 210 [s], at around the local
time = 3500 seconds. By using the data and Eq. (4), we can roughly predict the resulting SEs in
node A; SE(t = 3500) = % (0.02 x 107%/210) (210/2)% = 52.5 [us], since C = 0.02 x 10~4/210 and
t1 —to = 210/2 in Eq. (4). In the same way, SEs in node B and node C are respectively obtained as
52.5 [ps] and 13.1 [us]. Note that these predictions show a fair agreement to the observed SEs in Fig. 5.
We also note that fine fluctuations of SEs in Fig. 5 are smaller than the associated time-averaged SEs,
and this validates the meaning of the time-averaged SEs shown in Fig. 4(b).

From the above analysis of temporal skew variations observed in Fxperiment 1 and Experiment 2,
we infer that the estimated skew and the associated time offsets are influenced by the time window

552



size as follows?. Firstly, the instantaneous skew is the time derivative of the time offsets curve (i.e.,
Eq. (2)). And, as shown in Fig. 2, data sets of time offsets should be on a concave curve (or a convex
curve) if the skew continues to increase (or decrease). Therefore, as illustrated in Fig. 6, smaller
SEs are expected for less number of data points (i.e., shorter time window size) in linear regression
(i.e., Eq. (4)), on average, in the environment of Ezperiment 1 and Experiment 2. This prediction is
verified in control experiments for a stable static network environment in Section 4.

time window of linear regression o
| 1 synchronization error

210 sleconds o from 8 offsets
&l 1—. synchronization error
teo from 2 offsets

time offset

30 seconds
1

local time

Fig. 6. Time offsets resulting from a constantly decreasing skew. The sym-
bols e, o, and [J respectively represent data points, the estimated time offset
from eight data points, and the one from two data points.

In contrast to the static network environment considered above, in a harsh, dynamical network
environment a failure in a node or a link is inevitable. One of the worst case scenarios of such a
failure in FTSP is a lost of the root node and the resulting root node reelection. As observed in Fig. 5
of Experiment 2, right after root removal a large SE lasts for about several hundreds seconds. To
ensure the quality of synchronization within a certain level, we analyze such large SEs in detail by
varying the number of time offsets in linear regressions, in the next Section.

4. Design of improved FTSP and its performance evaluation

Based on the analysis of SE in Section 3, we now propose a simplistic improvement of FTSP in a
Mica2Dot testbed. We evaluate its performance through systematic experiments in a stable network
environment as well as in an unstable network environment due to root reelection.

First, to verify the prediction in Section 3, we investigate the relation between SE and the number
of time offsets (i.e., data samples) in linear regression (LR), in the following experiment.

Ezperiment 3: Twenty Mica2Dot motes form a single-hop network for 30 minutes. For each trial, the
number of time offsets in LR is set to 2, 4, 6, 8, and 10, respectively. For the fairness in the conditions,
the same motes and new button batteries are used. Temperature and humidity is maintained exactly
at 25°C and 30%RH throughout the experiment. In this Ezperiment 3, we measured (i) skew variations
and the associated SEs for each time offsets number, and (ii) SEs for our improved FTSP, both of
which are obtained in the stable as well as in the unstable network environment as in Ezperiment 1
and Fxperiment 2.

Firstly, we compare temporal skew variations for different time offsets numbers (i.e., numbers of
data samples) in detail. Figure 7 illustrates typical skew variations in Ezperiment 3; two data sets
are respectively obtained for the case of eight time offsets (x in Fig. 7), and for the case of two time
offsets (4 in Fig. 7). In both cases, right after the root removal at the local time (LT) = 1190 seconds,
the observed skew becomes constant until another root is newly elected at LT = 1360 seconds. This is
because in FTSP the value of skew estimation remains unchanged until a new root is reelected. After
this root reelection, skew estimation starts again by joining previous time offsets (before root lost)
to the current time offsets (after root reelection). This transient state lasts until the previous time
offsets are completely lost from the moving time window of LR; it lasts for about 30 x (8 — 1) = 210
[s] in the eight offsets case, and for about 30 x (2 — 1) = 30 [s] in the two offsets case, as observed
in Fig. 7. During these transients, larger instantaneous skew variations emerge as the number of
time offsets becomes smaller; we observe big jumps in the estimated skew for the minimum two time
offsets case (+) in Fig. 7. This induces large SE (not shown here, but similar to Fig. 5) according to

31n this particular testbed, the time offsets data itself was not directly available from the motes. Therefore, we observe
the time offsets indirectly from the skew estimations available in each mote.

553



x10™

-3

3.60 x10

‘% P transient ~ 30 [s] >< 8 offsets 2
Q > root removal 3 -+ 2 offsets P
S T mabrema] | et <1330 2
< . [

R e 90t © 1 i discontinuous jumps g
o) reelection |« 1 1335 >
£ N0 g
o b N IS
= I 1. o
% ?% 1.340 ?
5 355 root removal  transient ~ 210 [s] -T 1345 7

1000 1200 1400 1600 1800
local time [s]

Fig. 7. Temporal skew variations due to root removal and root reelection.
Data points x and + respectively show the case of eight time offsets and the
case of two time offsets.

,3.5[us]
(a) : ' | ' d or'iginal (b)
mprove: ] Improved
P FTSP FTsP |, P frep
o 2 { o
3‘2 3‘2 original
o 4pXX X o FTSP
[0 [0
E 6 XX X £ 10 pRK
5 8 XXX X v 8 [ X
*10 KKK X T2, XX X X
0 20 40 60 80 0 05 1 15 2 25 3

synchronization error [us] synchronization error [ms]

Fig. 8. Comparisons of synchronization errors from the original FTSP and
the improved FTSP. (a) Average synchronization error in a stable network
environment. (b) Maximum synchronization error in an unstable network en-
vironment.

Eq. (1). Namely, in an unstable network, LR with minimum two offsets no longer produces a better
skew estimation compared with the original eight offsets LR, and this is consistent to the insight from
Fig. 6.

Next, we consider how time offsets number influences the amount of SE on average. Figures 8(a)
and 8(b) show the SEs for several numbers of time offsets, obtained in Ezperiment 3, respectively for
stable networks and for unstable networks involving root reelection. Figure 8(a) shows a result of five
trials in Ezperiment 3 for the stable network environment. Each data point (x) represents the time-
averaged SE over 30 minutes. On the other hand, Fig. 8(b) shows a result of ten trials in Fzperiment
8 for the unstable network environment. Each data point represents the instantaneous, maximum SE
observed in each trial. Note we have already observed this sort of large instantaneous SEs of a few
milliseconds in Fig. 7. From these data, we observe; (i) for stable networks, the time-averaged SE is
smaller for a less time offsets number in LR, and (ii) in contrast, the maximum, instantaneous SE is
smaller for a larger time offsets number, for unstable networks involving root reelection. Note, these
observations are consistent to the result shown in Fig. 4(b) and the observations in Fig. 7.

From these observations, we obtain a reasonable idea of simple improvement for better clock
synchronization; FTSP (with Mica2Dot) is improved by using simultaneous two skew estimations.
Namely, the minimum two time offsets in LR are used for reducing SEs on average in a stable environ-
ment. And, at the same time eight (or ten) time offsets are used for suppressing large, instantaneous
SEs in an unstable environment, which are less than around 0.5 [ms] as observed in Fig. 8(b). As the
results, from these independent two estimates of skew, our improved FTSP should provide less than
around 0.5 [ms| SEs within around 30 [s] transients in the worst case scenario mentioned above (as
far as the network instability does not occur so frequently).

This improvement in the skew estimation algorithm is realized on each receiver node. We illustrate
the algorithm in Mica2Dot motes in Fig. 9. The algorithm of Fig. 9 involves two branches; in the
first branch ‘myrootID == rootID’ means the sender node (to this particular receiver node) is the

554



TO: time offset
LR: linear regression
RGT: receiver’s global time

Receiving TO data

YES

LR with two TO

myrootID>rootID

Discarding TO data

Fig. 9. Outline of the proposed algorithm for skew estimation.

same as before. Namely, it checks whether the network is the same as before (i.e., stable). On the
other hand, in the second branch ‘myrootID > rootID’ means the network is NOT the same as before
(i.e., unstable). We note that these branches effectively take care of all kinds of temporal link lost
and discommunication between nodes, including the worst case of root reelection. In addition, to
evaluate the performance of our improvement, we conducted systematic experiments under the same
conditions in Experiment 3. In Figs. 8(a) and 8(b) the average SE and the maximum SE from our
improved FTSP are shown for the stable network case, and for the unstable network case, respectively.
Both results verify that the improved FTSP outperforms the original FTSP in its synchronization
precision. Finally, we note the power consumption in the improved FTSP is nearly the same to the
one in the original FTSP, because we observe the battery life time is nearly the same for both cases
throughout the experiments.

5. Conclusion
Systematic control experiments identified and clarified yet another mechanism, in which synchroniza-

tion error is generated from temporal frequency (skew) variations in Mica2Dot motes. Based on this
insight, a simplistic improvement of FTSP is proposed, which is easily implemented with small com-
putational and communication costs. Its effectiveness is confirmed through comparative experiments.
Although our findings and improvement have been obtained in a particular testbed with Mica2Dot
motes, its essential idea can be useful for any other environments if skew is estimated from linear re-
gression. One candidate on this line is a smaller and cheaper (injection-locked) CMOS ring oscillator
as a GHz clock circuit which should exhibit a certain amount of temporal frequency variation [13, 14].
In addition to this, as mentioned in Section 1, recent results in [10-12] have enabled temperature-
aware clock skew estimations by utilizing the information of temperature dependence of the oscillator
frequency. These self-calibration methods should be naturally incorporated into our proposed scheme.
Therefore, our scheme here can possibly be useful in dynamic environments of working temperature
if the temperature dependence of the oscillator frequency is available. More experiments including
multi-hop networks and/or using other kind of clock oscillators would lead to further improvements
of clock synchronization and their applications.

References
[1] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits, “Shooter localization in urban terrain,”
IEEE Computer, vol. 37, no. 8, pp. 60-61, 2004.
[2] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using refer-

ence broadcasts,” in Proc. 5th Symposium on Operating Systems Design and Implementation,
pp- 147-163, 2002.

[3] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-sync protocol for sensor networks,” in
Proc. 1st ACM Conference on Embedded Network Sensor Systems, pp. 138149, 2003.

[4] J.-H. Chiang and T. Chiueh, “Accurate clock synchronization for IEEE 802.11-based multi-hop
wireless networks,” IEEE ICNP’09, pp. 11-20, 2009.

555



[5]
(6]

7]

[13]

[14]

A R. Swain and R.C. Hansdah, “A model for the classification and survey of clock synchroniza-
tion protocols in WSNs,” Ad Hoc Networks, vol. 27, pp. 219-241, 2015.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time synchronization protocol,”
in Proc. 2nd ACM Conference on Embedded Networked Sensor Systems, pp. 39-49, 2004.

C. Lenzen, P. Sommer, and R. Wattenhofer, “PulseSync: an efficient and scalable clock syn-
chronization protocol,” IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. T17-727,
2015.

H.-A. Tanaka, O. Masugata, D. Ohta, A. Hasegawa, and P. Davis, “Fast, self-adaptive timing-
synchronization algorithm for 802.11 MANET,” IEFE FElectronics Letters, vol. 42, no. 16, pp. 932—
934, 2006.

Crossbow Technology, Available at http://www.xbow.com/Products/Product_pdf files/
Wireless_pdf/MICA2_Datasheet.pdf.

Z. Yang, L. Cai, Y. Liu, and J. Pan, “Environment-aware clock skew estimation and synchro-
nization for wireless sensor networks,” in Proc. 2012 IEEE, INFOCOM, pp. 1017-1025, 2012.
J.M. Castillo-Secilla, J.M. Palomares, and J. Olivares, “Temperature-aware methodology for
time synchronisation protocols in wireless sensor networks,” IEFE FElectronics Letters, vol. 49,
no. 7, pp. 506-508, 2013.

Z. Yang, L. He, L. Cai, and J. Pan, “Temperature-assisted clock synchronization and self-
calibration for sensor networks,” IEFE Trans. on Wireless Communications, vol. 13, no. 6,
pp. 3419-3429, 2014.

K. Takano, M. Motoyoshi, and M. Fujishima, “4.8GHz CMOS frequency multiplier with subhar-
monic pulse-injection locking,” in Proc. 2007 IEEE Asian Solid-State Circuits Conf., pp. 336
339, 2007.

H.-A. Tanaka, A. Hasegawa, H. Mizuno, and T. Endoh, “Synchronizability of distributed clock
oscillators,” IEEE Trans. on Circuits Syst. I, vol. 49, no. 9, pp. 1271-1278, 2002.

556



