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Abstract — We show that the mathematical structure of Tsallis entropy underlies an important
and ubiquitous problem in nonlinear science related to an efficient synchronization of weakly forced
nonlinear oscillators. The maximization of the locking range of oscillators with the use of phase
models is analyzed with general constraints that encompass forcing waveform power, magnitude, or
area. The optimization problem is then recasted as a general form of Tsallis entropy maximization.
The solution of these optimization problems is shown to be a direct consequence from Holder’s
inequality. The resulting new maximization principle is confirmed in numerical simulations and
experiments with chemical oscillations with nickel electrodissolution. While weakly nonlinear
oscillators have generic optimal waveforms (sinusoidal, 50% duty cycle square wave, and equally
paced bipolar pulses for power-, area-, and magnitude-constraints, respectively), strongly nonlinear

oscillators require more complex waveforms such as smooth, square, and pulse ones.

Copyright © EPLA, 2015

Introduction. — Synchronization (injection locking)
of oscillators to an external forcing (injection signal) of
widely different waveforms is often used to provide means
to timing of essential system processes. In many branches
of science and engineering, methods for efficient synchro-
nization have been developed in recent years, because
the entrainment process plays a prominent role in the
functioning of dynamical systems [1-3]. Different fields
often use different waveforms: phase locking in nerve
membrane dynamics with a sinusoidal current [4,5], cir-
cadian synchronization with light-dark cycles of a square
waveform [3,6], and reset of the timing in pacemakers and
electrical devices with pulse signals [7,8].

The various forcing waveforms called for establishing
a theory for optimal synchronization of weakly forced
nonlinear oscillators; phase-model-based theories proved
to be useful because of their effectiveness in describing
the synchronization process as well as their analytical
tractability [1,2,9-11]. The shape of the forcing wave-
form profoundly impacts the efficiency of synchroniza-
tion for applications requiring low-power consumptions.

The width of the locking region requires waveforms re-
lated to a phase response curve (which shows the phase
shift in the oscillations due to an instantaneous pulse sig-
nal) [1]. Fast synchronization [2], or desynchronization [9]
is related to the derivative of the phase response curve.
Different forcing techniques using square or pulse injection
signals were developed for examples where the magnitude
and the area of the signals were minimized [3,6,7]. Most
previous theories resorted to variational calculus, such as
the Euler-Lagrange equation, which are intended inher-
ently for local optimization and limited to smooth sig-
nals [1,2,9]. In contrast, recent progresses [10,11] have
shown that the optimal-synchronization problem for min-
imum power, magnitude, and area signals can be solved
for a global optimization even with non-smooth signals,
by means of Holder’s inequality [12]:

(1)

in which [|f]lo = <\f(t9)|°‘>é denotes [ [ |£(6)]*dg] =, and
1<a,B<oc0and a !+ 371 =1.|f|o amounts to the

1fglle < 1 fllallglls,
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L%-norm of the function f if « > 0. For this inequality, the
following reverse form also holds (i.e., the reverse Holder’s
inequality):

(2)

where 0 < a < 1 and a~! + 87! = 1. Note that eq. (2)
is directly obtained by setting ||| fg|=|g|~# |1 to the Lh.s.
of Holder’s inequality (1) [12]. In egs. (1), (2), ||fgll1 =
[I£llallglls holds if and only if there exist constants A and
B, not both 0, such that A|f(6)|* = B|g(6)|® for almost
all 0 [12], which is referred to as the equality condition.

1£gll = 1 fllallglls,

The general solution of the optimal synchronization im-
plies that there might be a general mechanism that un-
derlies the seemingly very different optimization problems
(for power-, magnitude-, or area-constraints, respectively).
In fact, entropy-based quantities often reflect the presence
of a maximization mechanism under given constraints.
Tsallis entropy [13,14] is one of such instances, which was
proposed as a versatile framework for expansion of the
realm of classical (Boltzmann-Gibbs) entropies for nonlin-
ear processes, in particular, those that exhibit power-law
behavior.

In this letter, as illustrated in fig. 1, we show that
the mathematical structure of Tsallis entropy underlies
an important and ubiquitous problem in nonlinear science
related to an efficient synchronization of weakly forced
nonlinear oscillators. We formulate a unified theoret-
ical framework for optimal synchronization and Tsallis
entropy maximization, ¢.e., a new maximization princi-
ple. A general analysis of this maximization solution is
performed for the characterization of optimal forcing sig-
nals for power-, magnitude-, and area-constraints. The
theory is tested with numerical modeling of an electro-
chemical oscillatory process. Finally, we demonstrate the
efficiency of smooth, square, and pulse signals obtained
with the theory for establishing optimal synchronization
(with power-, magnitude-, and area-constraints, respec-
tively) in laboratory experiments with oscillatory nickel
dissolution in sulfuric acid.

Tsallis entropy maximization underlies optimal
synchronization. — In order to make the essence of our
finding more transparent, we focus on the case of a single
oscillator with one external weak forcing; however, the re-
sults can be extended for designing optimal m : n mutual
synchronization [11] in networks of weakly coupled non-
linear oscillators. We consider a general class of periodic
functions f(0) as the weak forcing, namely, those satisfy-
ing the following constraint: ||f||, = M, in which both r
and M are positive constants. Especially for » = 1,2, oo,
this constraint respectively defines the area-, power-, and
magnitude-reduced forcings for a certain small M. Be-
sides ||f|l; = M, another constraint 5- [* f(6)d6 = 0,
i.e., a charge-balance constraint [1,2,15], is introduced, be-
cause total injection (injected charge) is required to be 0
in practical situations.

forcing strength M
A

locking range L[ £~

(f(0)) = M? _ Aw |fO) <M
- X/ (fo)) =M Y
C[fopt.2(6) Fopt. 0o (0)
d opt, oo
T fopt,l(a) 77?: 0 ﬁﬂ'
-m\Jo 0 T
-ml 0 —
[ Holder's inequality : | /gll1 < [|flalglls |
f FPopt, 1(@ . 9 Fopt, 3(1’7) h FPopt, 0(7)
I | ‘
0 T 0 T 0 z

Fig. 1: Optimal forcings fopt, » maximizing synchronizability,
and the associated escort functions Popt, ¢ maximizing Tsallis
entropy. (a) Arnold tongue determining the locking range. Aw
denotes the frequency difference between the oscillator and the
forcing. (b) Phase response function Z for the Hodgkin-Huxley
neuron model [2]. (c), (d), (e): curves represent the optimal
forcings for r = 2,1, 00, respectively. (c) Power-reduced forc-
ing, (d) area-reduced forcing, (e¢) magnitude-reduced forcing for
the Hodgkin-Huxley neuron model [2]. (f), (g), (h): escort func-
tions Popt, ¢(x) of probability distributions maximizing Tsallis
entropy for ¢ = 1, 3, 0, respectively. Note that for ¢ = 1 Tsallis
entropy is identified with the Boltzmann-Gibbs (BG) entropy
since it converges to the BG entropy as ¢ — 1+ 0 [13].

Phase locking with a weak forcing f(0) occurs when the
slowly evolving phase difference ¢ between the oscillator
and the forcing exhibits a stationary state, i.e.,

d¢/dt = Aw +T'(¢) = 0, (3)
where Aw = w — Q is the difference between the forc-
ing frequency Q and the natural frequency w of the os-
cillations, and T'(¢) is a periodic function defined by
L(¢) = &= [T Z(0+ ¢)f(8)d0 and Z(#) is the phase re-
sponse (sensitivity) function (PRF) [16], obtained numer-
ically or experimentally [17,18]. Note that this PRF is
the same notion as the phase response curve (PRC) under
weak inputs. The range of the frequency difference Aw be-
tween the oscillator and the forcing, in which the solution
for a stable steady state exists for ¢, defines the locking
range (synchronizability) L[f ()] for a certain fixed forcing
waveform f(#). For maximizing L[f] under the constraint
= (f(0)) = 0, the functional J[f(0)] = L[f] + £ (f(6))
is introduced, where p is a Lagrange multiplier and () =
J7_ - df [1]. Moreover, J[f] is rewritten as the following
inner product of f and g:

where
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wand A¢ in eq. (5) are determined from I' and the con-
straint on || f]|, = M, as shown later. It should also be
noted that with the optimal waveform, A¢ becomes the
difference between phase values of the maximum and min-
imum of I'(¢). Thus, the optimal synchronizability can be
defined by the following problem:

maximize J[f], subject to ||f|,. = M.

(6)

This optimal synchronization problem was previously
solved by using the calculus of variations, only for
r =2 [1,2]. In addition to the case of r = 2, this problem
was recently solved for general r, i.e., for 1 < r < oo, via
Holder’s inequality [10,11]. This finding hints at a new,
complete analysis of Tsallis entropy maximization. Tsallis
entropy is defined by the functional S[p(z)] of the proba-
bility density function (PDF) p(z),

Slp(@)] = [1 = (p(x)")2]/(q = 1), (7)

where (-), = [*_- dz [13]. In addition, the escort func-
tion of p(x) is also defined as P(x) = p(z)?/{(p(x)?),. For
the parameter ¢, we usually assume 0 < ¢ < 3 and ¢ # 1.
Tsallis entropy maximization is then defined as

maximize S[p(x)],
subject to (p(x)), = 1 and (h(z)P(z)), = o2, (8)

where we assume h(r) = x? which constrains the second
moment of P(x) to be 2.

Note for a given ¢ and o, eq. (8) is equivalent to the
minimization of (p(x)?), under the constraint ((h(z) —
o)pl(x))z = 0, i.e., (h(x)P(x)), = 02 in eq. (8). There-
fore, by introducing the following functional T'[p(z)] and
the multiplier A\, Tsallis entropy maximization is recast as
the equivalent optimization:

minimize (or maximize)

Tlp(x)] = o*(p(x)")a + M(h(z) = 0*)p(2)")s
— (p(@)TNb(z) + (1= Mo

for ¢ > 1 (or ¢ < 1), subject to (p(z)), = 1.

(9)

This T'[p] of eq. (9) is directly mapped to Holder’s inequal-
ity in eq. (1) or eq. (2) by inserting

p(x)? = f and Ah(z) + (1 — N)o? =g, (10)

to T[p]. Namely, Tsallis entropy maximization is equiva-
lent to the optimization:

maximize (or minimize) (fg) for ¢ <1 (or ¢ > 1),
subject to ||f]l. =1, (11)

in which (fg) = (p(z)?[Ah(z) + (1 = A)o?])z and [|f[|, =
[Ip?]|2 = (p(z))s = 1. From egs. (4), (6) and eq. (11), we
realizqe that the mathematical structure of Tsallis entropy
maximization underlies the optimal synchronization. We
note that Rényi entropy maximization [13] is recast into
the same form of eq. (11) if the constraints in eq. (8)
are imposed, for instance.

Optimization with Holder’s inequality. — The fea-
tures of the solution of the optimization problem (6)
(or (11)) are now directly answered by Holder’s inequal-
ity. Below, we outline the resulting solutions to both of
the optimization problems (6) and (11), respectively for
the following cases: 1) 1 < a < o0, il) a = o0, iii) a = 1,
and iv) a < 1 of egs. (1), (2). For illustration, fig. 1 shows
the solutions for the optimization problem for a PRC for
the Hodgkin-Huxley neuron model along with the escort
functions of probability distributions maximizing the Tsal-
lis entropy. Here, mathematical details related to obtain-
ing solutions with Holder’s inequality are omitted, as they
are presented in [10,11].

i) Case for 1 < o < oo: The optimal forcing fopt, »
is obtained by setting o = r in the equality condition of
eq. (1),

Fopt, +(0) = Msgnlg(9)](lg(0)|/llgll =)™, (12)

r—1

where ¢ is given as in eq. (5) and this representation is
proved to be unique, i.e., there is no other optimal forcing
without that in eq. (12) [10]. The two parameters A¢ and
win g(0) of eq. (5) are determined by solving two nonlinear
equations of A¢ and p, which are obtained by plugging
eq. (12) into the constraints (f) = 0 and || f||,, = M [10,11].
This solution (12) results in a relatively smooth forcing
signal; the shape of the signal often resembles that of the
PRC as far as r takes a moderate value. As a special case,
the power-reduced forcing (in fig. 1(c)) is obtained from
eq. (12) for r = 2.

Similarly to the optimal forcing fopt, », the optimal PDF

to Tsallis entropy (7) is obtained by setting a = ¢~ (i.e.,
0 < ¢ < 1) in the equality condition of eq. (1),
1 1

Popt, ¢() = 77| Mh(2) + (1 = X)o?| =7, (13)

where v and A\ are determined from the constraints in
eq. (8) and a cut-off is naturally introduced, i.e., pg(z) =0
for x satisfying Mh(z) + (1 — A)o? < 0. As a result,

1
1 1—qa?]™e
pors o) = 5 |1~ 55 (19
ot 4 Zy, 3—qo? 4
in [13,14] is recovered, where Z, = (?%302)%B(§%g,%)

and [a] . = max(a,0).

ii) Case for a = oco: Similarly to the case of 1 < a < 00,
Holder’s inequality (1) results in the optimal forcing by
setting a = r = oo,

Jopt, oo(0) = Misgnlg(6)], (15)

which is consistent with the limit of eq. (12) as r — oo
and its uniqueness is proved [10]. A¢ and X in g(6) of
eq. (15) are determined, similarly to the above case for
1 < a < oo. Note that this forcing shown in fig. 1(e)
corresponds to the bang-bang control obtained under the
magnitude-reduced constraint [15].
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As for Tsallis entropy, a = oo (i.e., ¢ = ! = 0) im-
plies p(z)? = 1 for p(x) > 0 in eq. (7). Hence, Tsallis
entropy is maximized for any p(x) with the compact sup-
port [—v/30, v/30] although a detailed argument for this
is omitted here. Also from eq. (13) it is proved that the
escort, function of pept, 4() converges to the step function
Popt, o(x) shown in fig. 1(h) (pointwise, ¢ — 0+ 0).

iii) Case for a = 1: In contrast to the case ii), from
eq. (1) with a =1, fopt, 1 is proved to become a pair con-
sisting of one arbitrarily tall negative pulse and one arbi-
trarily tall positive pulse (i.e., bipolar pulses) separated
by A¢max [10] as shown in fig. 1(d). Since this optimal
forcing for r = 1 includes only one parameter A¢yay, the
optimal A ayx is determined algorithmically from Z, sim-
ply by tuning A@max in the range of [0, 7] and observing
the resulting locking range L[f] for each A@mayx numeri-
cally or experimentally.

In contrast to the case of ¢ = 0, Tsallis entropy (7) is not
defined at ¢ = 1. However, it is known that it converges
to the Gaussian distribution as ¢ — 1+ 0 [13].

iv) Case for a < 1: As opposed to the above cases of 1 <
r (= a) < oo, it is not known that fop, » has any physical
interpretation for r < 1. However, for Tsallis entropy, the
case of ¢ = a~! > 1 is important from its applications,
since it captures the power-law distributions with heavy
tails. Similarly to the case of 0 < ¢ < 1, the optimal
PDF popt, q(x) is uniquely obtained as the same formula
in eq. (14), by setting o = ¢! (i.e., ¢ > 1) in the equality
condition of eq. (2). Note that Z, is obtained as Z, =
(%02)%3(%, 3) and ¢ < 3 is naturally required.

Simulations. — The principal predictions of the theory
are first confirmed in numerical simulations of a chemical
corrosion model (see [19]) describing the electrodissolution
of nickel in sulfuric acid. The dimensionless model simu-
lates the variation of the electrode potential E and surface
coverage O of oxide species with time t at a constant cir-
cuit potential V' and cell resistance .S,

E V-F [ een(B?
At S |1+cpexp(E) +ae(B)]1=0),
46 _ _oxp(B/2) | o benexpB) o

dt 1+ cpexp(E) ¢ ¢ + exp(E)

The model parameters were chosen to produce limit cy-
cle oscillations close to a supercritical Hopf bifurcation,
namely, the dimensionless circuit potential V is set at 15,
acid concentration ¢y, is set at 1600, and kinetic parame-
ters are @ = 0.3, b = 6 x 107°, ¢ = 0.001, S = 20, and
G = 0.01. The PRF Z for perturbation of the electrode
potential is shown in fig. 2(a). The PRF was applied to ob-
tain three optimal waveforms for the power-, magnitude-,
and area-reduced constraints as shown in fig. 2(b). For
power-constraint, the waveform coincides with the generic
optimal waveform Z(0+7)— Z(0) [1], and has a relatively
smooth character that retains the odd harmonic compo-
nents of the PRC. The waveforms for the magnitude- and

o . 20 02
0 g g-wc Eotd i1
o~ g T £ l
E-z o w o o
N_4 SSSqPSO 0"2453101214
L 3 % f i
9 2, ot 2 £ Eo1
4 (rad) E g a l
2 o =
$q S0 g S 0
£ 1 SCTE . S Sq P SO , 12 3 4
$ o . - 2
RN | g £,° garl" ¢
“l, \Vofesssss o 21 £01
LD < & |
i 0 0

% e’ S Sq P SO 05 ¢ i
Fig. 2: (Color online) Simulation results from optimal syn-
chronization of a chemical oscillatory model (16). (a) PRF.
(b) Three waveforms: Sq: square wave (thick dashed
line). P: pulse wave (thick solid line). SO: smooth (power-
reduced) optimal waveform determined as Z(0 + w) — Z(0).
(c), (e), (g): synchronizabilities E.(P), E-(M), E-(A) for
power-, magnitude-, and area-reduced constraint, respec-
tively. For comparison, results of sinusoidal synchronization
simulations are also shown (waveform S). (d), (f), (h): synchro-
nizability histogram for 1000 random waveforms for power-,
magnitude-, and area-reduced constraint, respectively. The
random waveforms were generated with uniformly distributed
random numbers for the Fourier coefficients of the waveforms
up to five harmonics. The arrow denotes the maximum syn-
chronizability limit obtained by smooth optimal fopt, 2, square
fopt, oo, and pulse fopt, 1, respectively.

area-constraint are also the simplest ones expected for
50% duty cycle square wave and two evenly paced bipolar
pulses, respectively. The relatively simple shapes of the
optimal waveforms imply that under these conditions the
oscillations have relatively weak nonlinear characters.

To compare the synchronizing capability of different
waveforms, we defined the reduced synchronizabilities F,
as follows. Numerical simulations for the synchronization
of the oscillations were carried out by periodically vary-
ing the circuit potential variable as V' = 15 + Af().
The simulations were conducted at fixed forcing frequen-
cies Q and the amplitude A of the waveform was increased
until synchronization occurs where the critical amplitude

A, was recorded. The reduced synchronizabilities E, are
defined as

E, = |Aw|/A.R, (17)

where R is the rescaling factor that enables a comparison
of different signals for their power (R = ||f|l2 = (f2)2),
magnitude (R = ||f|lcc = ess. sup. (|f])), or area (R =
Iflli = (|f]))- The average value of the reduced syn-
chronizability for fixed positive and negative detunings is
proportional to the width of the Arnold tongue at a given
value of the constraint; therefore, it is a useful quantity
to characterize the synchronizing capability of a wave-
form. In the following, 2% detuning was applied, namely
Aw/w = £0.02.

The simulations confirmed that for power-, magnitude-,
and area-reduced synchronizabilities the smooth optimal,
square, and pulse waveforms generate the widest locking
range L[f] (see figs. 2(c), (e), and (g); for comparison,
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Fig. 3: (Color online) Experimental results from optimal syn-
chronization control of oscillations close to Hopf bifurcation
(Vs = 1.080V) with three chosen waveforms. (a) The exper-
imentally measured nearly harmonic PRF of the oscillations
and the shape of oscillations (inset). (b) The three consid-
ered control waveforms: sine (red), pulse (green) and square
(blue). (c), (d), (e): comparison of the reduced synchronizabil-
ity E-(P), E-(A), E-(M) for three constraints: power-, area-,
and magnitude-reduced constraint, respectively. The entrain-
abilities are linearly renormalized such that the value for the
sinusoidal waveform is 100. The same colors are used for wave-
forms as in panel (b).

results for synchronization with sinusoidal waveform are
also presented). As a further confirmation of the nontriv-
ial shapes of the optimal waveforms, we also performed
corresponding numerical simulations with 1000 waveforms
with random Fourier coefficients. The histogram of the
synchronizabilities (see figs. 2(d), (f), and (h)), show
that these random waveforms have bell-shape distribu-
tions whose range is below the synchronizability limited
by the corresponding optimal waveform.

Experiments. — The enhancement of synchronization
with optimized forcing waveforms was verified in exper-
iments with an electrochemical oscillating reaction. The
experimental system was a standard three-electrode elec-
trochemical cell (controlled with a Gamry Reference 600
potentiostat) with a 1 mm diameter Ni-wire working elec-
trode in 3 M sulfuric acid electrolyte, a 1.5 mm Pt-coated
Ti-rod counterelectrode, and a Hg/HgsSO,4/K2SO4 (sat)
reference electrode. (All potentials are given with respect
to the reference electrode.) The cell was kept at a tem-
perature of 10°C. When a certain fixed circuit potential
V = V; is applied with a 1kOhm external resistance at-
tached in series with the Ni wire, oscillatory behavior can
be observed that occurs through a Hopf bifurcation at
Vs =1.06 V with the period T' ~ 2.2s. The forcing signal
waveform f(Qt) (= f(0)) is superimposed on the circuit
potential such that V = Vi + Af(0), where A is the am-
plitude. The output signals were collected and analyzed
using a National Instruments Labview data acquisition
system at 100 Hz and 1000 Hz sample acquisition rate for
the synchronization experiments and PRF measurements,

0.05 =
g ]
A= |
>
N0 E i
< i
H
H
005 :
0 7r 27
f) (rad)
150 —— 200,
& 51 52 9 el S5
¥ g ‘9- 150/
g § 100} é
5 |3 3 100}
2 p, ; %l £
a} “2
0 [
Waveforms Waveforms Waveforms

Fig. 4: (Color online) Optimal synchronization control of ex-
perimental relaxation oscillations far away from Hopf bifurca-
tion (Vs = 1.180V). (a) The experimentally measured PRF
and the waveform (inset). (b) The three optimal control wave-
forms corresponding to the three examples: optimal wave (red)
for power, optimal thin pulse (green, pulse width: 0.0117)
for area, and double square (blue) for magnitude constraints.
(¢), (d), (e): comparison of the reduced synchronizability (E,)
for all the six controls in three constraints: power-, area-, and
magnitude-reduced constraint, respectively. The entrainabili-
ties are linearly renormalized such that the value for the sinu-
soidal waveform is always 100. The same colors are used for
waveforms as in (b), with other waveforms in black. (Sym-
bols: S for sine, O for power optimal, S1 for 0.57-separated
square shown in fig. 3(b), S2 for optimal double square, P1 for
0.5T-separated thin pulse, P2 for optimal thin pulse).

respectively. The phase of the oscillations was determined
with the Hilbert transform method [18].

At a fixed circuit potential V; = 1.080V, the system
is close to Hopf bifurcation and the oscillation waveform
and the phase response function are nearly harmonic as
shown in fig. 3(a). For such nearly harmonic waveform
PRFs, the optimal waveforms are smooth sinusoidal, two
evenly paced pulses, or a 50% duty cycle square wave for
the power-, area-, and magnitude-reduced constraint, re-
spectively. (Here, the pulse wave has a width of 0.17.)
We measured reduced synchronizabilities E,. of these three
waveforms at each constraint, and compared them sepa-
rately (figs. 3(c), (d) and (e)). As predicted by the theory,
the smooth sinusoidal, pulse, and square waves are supe-
rior to the others for power-, area-, or magnitude-reduced
constraint, respectively. Even for this relatively harmonic
PRF, the optimal wave can outperform the others by 6%
t0 93% depending on the specific constraint and waveform.

The chemical oscillation waveform and PRF include
strong higher harmonics when the electrodes are polar-
ized at an elevated potentials of V; = 1.180V as shown in
fig. 4(a). For this system, we also used the theory to de-
termine the optimal waveforms for the three constraints as
shown in fig. 4(b). For the minimum-power constraint, the
optimal waveform is a smooth signal whose shape is con-
nected to that of the PRF in a highly nontrivial manner.
For the area constraint, the two pulses are separated by a
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nontrivial time of 0.257 instead of the usual 0.57 for the
harmonic case. For the magnitude constraint, the optimal
square waveform has a double-square shape; each square
shape has a different size and the two square waves are
separated by 0.387. We measured the synchronizability
for the three optimal waves as well as those obtained for
the harmonic PRFs. This comparison is expected to re-
veal the importance of higher harmonics in the PRF for
the experimental system. The experimental result for the
power constraint (fig. 4(c)) shows that the optimal smooth
waveform clearly outperforms the other tested waveforms;
for example, the synchronizability is enhanced by 50%
compared to the smooth sinusoidual waveform. For the
area-reduced constraint (fig. 4(e)) the situation is similar;
the optimal pulse waveform is 19% better than the 0.5T
separated pulse, and over two times better than a simple
sine wave. These results imply that the sinusoidal wave-
form can be very poor for the power- and area-reduced
constraint cases. Finally, for the magnitude-reduced forc-
ing (fig. 4(d)), the optimal wave achieves about the same
performance as a 50% duty cycle square wave does. How-
ever, in this example we can still see some effect of higher
harmonics; the difference between the square wave and
the sine wave is greatly enhanced (60%) in contrast to the
relatively smaller enhancement (25%) observed with the
nearly harmonic PRF.

Conclusion. — We showed that the optimal synchro-
nization problem can be translated into Tsallis entropy
maximization, which can be solved by Hélder’s inequality.
This mathematical finding provides an important physi-
cal realization of the widely known and commonly used
inequality. The numerical and experimental results in a
chemical system confirmed the efficiency of Tsallis entropy
maximization analogy design of forcing waveforms for op-
timal synchronization. Because the theory in the present
paper is independent of the details of a system, it could
also apply to other optimal designs such as those in prac-
tical electrical circuits [20], in micro- and nano-integrated
circuit oscillators [8] as well as in biology for PRF-based
synchronization of neuronal spiking or circadian rhythm.
Further theoretical treatment is required for noisy envi-
ronment, oscillator networks, or for strongly forced os-
cillators [21]; such attempts could be possible with the
development of the phase model theory.
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