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Chaos from Orbit-Flip Homoclinic Orbits Generated in a Practical Circuit
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A new class of chaotic systems is generated in a practical, nonlinear, mutually coupled phase-locked

loop (PLL) circuit.

Theoretical results make it possible to understand experimental results of such

PLL’s on the onset of chaos using the geometry of the invariant manifolds, while the resultant simple
geometry and complex dynamics is expected to have applications in other areas, e.g., power systems or
interacting bar magnets. The 1D map projected from a numerically obtained attractor indicates the ex-
istence of a piece-wise linear structure having a sensitive dependence on the bifurcation parameter fo,.

PACS numbers: 05.45.+b, 84.30.Ng, 84.30.Qi, 84.30.Wp

Much research has been directed at investigating the
dynamical behavior occurring when a homoclinic orbit
unfolds. Shil’nikov’s theorem straightforwardly shows the
existence of the Smale horseshoe near a homoclinic orbit
under a specific eigenvalue condition of the linearized
matrix located at the saddle-focus fixed point [1]. On the
other hand, for a homoclinic orbit arising from a saddle
fixed point located in a three-dimensional (3D) vector field,
studies aimed at elucidating this phenomena have only
been carried out primarily from a mathematical standpoint
in which the following generic conditions are considered
to hold: (1) The homoclinic orbit I'(z) is tangent to the
eigendirections e“ and e°® associated with the principal
eigenvalues A and A* as t — *oo; (2) AY # |A%]; and
(3) the stable manifold W*(0O) at O transversely intersects
with the two-dimensional (2D) extended unstable manifold
We*(0O) along the homoclinic orbit, where W¢“(0) is
tangent at O to the linear space spanned by e“ and e*.

Under conditions (1)—(3), nonexistence of homoclinic
doubling bifurcation is proven [2]. However, if one of the
above conditions is broken, complex dynamical behaviors
are known to occur [3—6], namely, the homoclinic orbit is
called orbit flip or inclination flip when conditions (1) or
(3) are broken, respectively. Results have been obtained
regarding the Smale horseshoe in an unfolding of the orbit-
flip homoclinic point [4] or inclination-flip homoclinic
point [5]. Kokubu and Oka [4] investigated the unfolding
of the orbit-flip homoclinic point and demonstrated the
existence of the Smale horseshoe and invariant foliation,
while Homburg, Kokubu, and Krupa [5] showed in an
unfolding of the inclination-flip homoclinic point that
N-homoclinic bifurcation occurs under some eigenvalue
conditions of the linearized matrix located at the saddle
fixed point. lori’s [6] detailed numerical study was the
first to confirm such bifurcation for the orbit-flip case using
a piecewise linear ordinary differential equation (ODE).
However, resultant chaos from the orbit-flip homoclinic
orbit has not yet been identified to occur in a concrete
system, i.e., one possessing associated chaotic dynamics
unfolding from the orbit-flip homoclinic orbit. This led to
the present Letter which describes a real, practical system
that possesses chaotic behavior for modeling orbit-flip
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homoclinic bifurcation. In addition, the system’s Smale
horseshoe generation mechanism is explained.

Throughout this Letter, phase-locked loops (PLL’s) are
considered that incorporate a voltage controlled oscillator
(VCO), a phase detector (PD) having triangular character-
istics (Fig. 1), and a loop filter (LF) comprised of a sim-
ple RC filter with transfer function F(S) = 1/(1 + 75).
Such PLL’s can be connected to form mutually coupled
PLL’s, which are frequently used in practical communica-
tion systems to synchronize geographically separated tim-
ing clocks. The following fourth-order ODE describes the
dynamics of the phases of such PLL’s:

X + 2{1;(1 + h(xl - )Cz) =9, (1)
¥+ 20V ri/rxy + (ri/r)h(x, — x1) = —(r1/r2)d,

where x; and x, are normalized variables from phases ¢
and ¢, of PLL 1 and PLL 2, respectively. ¢},%, 71,72,
and &8 are also normalized parameters of PLL 1 and PLL
2, while & is a 2wr-periodic triangular function (Fig. 1).
Equation (1) can be normalized to give

511 = Di> ézzpz,
p1 = —Bihlqy — q2) — aipi + yi, 2)
pr = —PBah(q2 — q1) — azp> + 2,

where ay = 241, ay =20r/r, B =1, Bo=ri/r,
1 = 8,and y> = —(r;/r2)é.

Mutually coupled PLL’s possess chaotic dynamics for
a wide range of realistic parameters. Although not syn-
chronized, they are close to synchronization, i.e., they
are marginally out of lock as described by Endo and

Chua [7]. These researchers carried out experiments using
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FIG. 1. Triangular phase detector characteristics.
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real PLL integrated circuit modules as well as perform-
ing corresponding numerical simulations. Consequently,
they numerically showed the existence of the positive Li-
apunov exponent, and also described the resultant broad-
band power spectrum generated by the real circuits.

Physically, Eq. (2) describes a class of mutually cou-
pled nonlinear oscillators with 277-periodic odd functions.
It should be noted that symmetry reduces Eq. (2) to a
third-order ODE, namely, by introducing P, = p; + pa,
Py =p; — p2, Q1= q1 + g2,and Q2 = q1 — g2, Eq. (2)
becomes

0 = P, (3a)

0, = P, (3b)

Py = —(ayPi + a_P3)/2 — B-h(Q2) + v+, (3¢

Py = —(a_P| + a,P2)/2 — B+h(Q) + y—, (3d)
where a+ = a) + az, a- = a1 — az, B+ = B + B2,

B-=pB1 — Ba,y+ =1 + y2,and y_ = y; — v,

Note the solution for P;,P,, and @, can only be
determined by Egs. (3b)—(3d). Next, we employ the
transformation x = P,/B_- — P,/B+, y = P»/B+, and
z = @,, which reduces Eq. (3) to the following third-
order ODE:

X = Apx + Azy,
y = By + Bix + Byy — h(z), @

7= B+y,
where A} = (a-/B+ — a+/B-)B-/2, Ay = (B-/B+ —
By/B-)a-/2, Bo=ry /B =268, Bi=—a B /284,
and B, = —(a-/B+ + a+/B-)B-/2. Although h(z) can
be either sinusoidal or triangular depending on the type
of employed phase detector, only the triangular function
is considered here.

Since Eq. (4) is 27 periodic with respect to z, let us
concentrate on the region D = {(x,y,2)| — 7 — d =z =
7 — &8}, in order to examine the geometric structure of
the defined vector field. Region D can be divided into
three segments, D+, Do, and D_, respectively, defined by
Dy ={(x,y,dlm/2 <z =7 — 8}, Dy ={(x,y,2)llz] =
w/2}, and D_ ={x,v,2)l —m -6 <z<—m/2},
where the vector field in each segment is linear. Further,
denote the planes {(x,y,z)lz = *7/2} as >, and > _,
respectively. From Eq. (4) and the form of h(z), it fol-
lows that a unique equilibrium point at O, Oy, O_ exists
in D4, Dy, D_, with their positions being, respectively,

Oi = (0,0,i’iT - 5), 00 == (0,0,5) (5)

Here, attention is focused only on one of the three sets
of chaotic parameters experimentally obtained by Endo
and Chua [7]:

{1 = 0614, ¢ = 0331,

for = 18250 Hz, fo, = 25400 Hz,
r1 = 45500/12500, r, = 5.027/5.298,
=27 (for — f02)/(45500 + 12500),

(6)

leading to

1340

A = —1.242187, A, = —0.038378,
By = —0.020119, B, = —1.282425, (7)
By = 6 = —0.774565, + = 4.836228.

The set of parameters in Eq. (7) corresponds to the real
eigenvalues Ay, Ay, and A, of the linearized matrix of the
vector fields at O+ and O_. These are obtained by solving

—AA = AN = By) + Bi(Ar — A) + ABiA =0, (8)

giving (Ay, Ay, A,) = (—1.241990, —2.932221,1.649 599).
In segment Dy, the real eigenvalue A; and the pair of
complex-conjugate eigenvalues A, 3 are obtained by

—AMA = AD)A = By) + Br(A — A) + AaBiA =0, (9)

giving (A}, Ap3) =(—1.242387,—-0.641 1124 + 2.013431i).
The corresponding eigenvectors (x,y,z) to the above
eigenvalues determined the invariant manifolds
W3(0-), W(0Oy), E(Op), and W*(0-), and the extended
unstable manifold W¢“(O.). Figure 2(a) schematically
depicts these invariant manifolds, where W*(0O-) and
We(0O+) are planes, respectively, spanned by e°® and
e**, or by the eigendirections ¢* and e”, giving the lines
wS(o-)NY_ and WO:)NY>,. From Egs. (5),
(8), and (9), it is evident that the positions of O, Oy,
and O_- depend only on the parameter §, and that the
eigenvalues (vectors) are not dependent on 6. Hence, if
we only change 6, i.e., the free-running angular frequency
fo2 of PLL 2, then W*(O-), W*(Oo), E(Op), W*(0-),
and W(0,4) do not change their normal vectors or
directions, though they are shifted in the z direction by
the position changes of O_,0., and Oy. Therefore,
a critical parameter 8. is expected to exist under the
following situation: (i) The intersecting point p, of >,
and W“(0O.) is mapped onto the intersection of W*(O-)
and > _ by the linear flow in Dy for § = §. [Fig. 2(a)]. If
6 # &, the following situations are expected to occur de-
pending on whether & < 8. 0or 8 > 8. (ii) for & > 6.,
p+ is mapped to the half-space containing O, separated
by W*(Q-), as shown in Fig. 2(b), or (iii) for § < &,
p+ 1s mapped to the opposite half-space separated by
Ws(0-). Situation (i) leads to a set of two nonlinear
(finite dimensional) equations derived from the solution
of Eq. (4) in Dy, where fy, and the time interval 7, in
which p. is mapped from > | to >, are unknown. By
using the parameter values of fo;, {12, and r;, in Eq. (6),
8. (i.e., critical frequency fg,) for situations (i) can be
obtained by solving these nonlinear equations, giving

For = 25395327, T = 0.787206. (10

From Egs. (6) and (10), 6, = —0.774058. When 6 = §,,
the point mapped from p, to the intersection of W*(O-)
and Y. asymptotically goes to O_, because Ay < A, <
0. Thus, situation (i) indicates that a saddle connection
exists between O, and O_, as shown in Fig. 2(a). Such
a connection can be considered as a homoclinic orbit if
O, and O_ are identified. When § is slightly larger than
8., the orbits from the neighborhood of p. go to the
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sink Oy, i.e., the two PLL’s undergo lock-in as shown
in Fig. 2(b). However, when & is slightly less than 6.,
being the case if the set of parameters are per Eq. (7),
this situation can be considered to represent an unfolding
of the orbit-flip homoclinic point as shown in Fig. 2(c).
Solving a set of two nonlinear equations having unknown
variables fp, and 7 in a similar manner as that mentioned

w(0-) (a)

we(0,)

y

FIG. 2. (a) Saddle connection in the piecewise linear flow.
(b) Lock-in dynamics for 6 > 8.. (c) Out-of-lock dynamics
for & < é..

above, the orbit-flip homoclinic point can be verified to
exist at the slightly different parameters of A, = 0 and
By = —0.774348, while A;,...,B; and B4 are the same
as in Eq. (7). In this case, the saddle connection exists
in the plane x = 0. Since Eq. (4) is linear in Dy, the
transversality of W¢“(0;) and W*(0O-) along the saddle
connection can be verified by solving the variational
equation along the saddle connection in Dj,. Hence,
Eq. (7) is the parameter set that represents unfolding of
the orbit-flip homoclinic point. This behavior completely
explains that shown experimentally, i.e., chaos occurs in a
marginal out-of-lock condition [7].

The existence of the Smale horseshoe arising from an
orbit-flip homoclinic orbit in the general system [4] can
be proven. Figure 3 illustrates the generation mechanism
of the Smale horseshoe arising from Eq. (4). By
identifying O, and O_, we can explicitly obtain two
flow-defined maps [], : >, —=>_and [L:>_— >,
in the neighborhood of the original homoclinic orbit. [T,
is shown to be a diffeomorphism approximated by a
linear map in the neighborhood of the homoclinic orbit,
while an analysis of the solution in D+ will show [],
produces a folding effect. Therefore, [], o]]; folds a
small rectangle on >, near the homoclinic orbit and
maps back the folded object onto the original rectangle
on > ,: a behavior proving the Smale horseshoe exists in
a suitably chosen, small, thin region near the original
homoclinic orbit. Moreover, a one-periodic orbit is
expected to appear along the original homoclinic orbit
[8], and can be verified to exist with the parameter set
of Eq. (7) using a computer-assisted proof based on
self-validated numerics. Using the parameters of
Eq. (7), we numerically obtained the cross section at
> _, using a detailed double-precision computation;
thereby showing the occurrence of a small, thin attractor
[Fig. 4(a)] that appears to have a piecewise linear
structure in an affine transformed coordinate of x
and y. To examine the dynamics occurring on the at-

Ws Weu

S, UWe(0)

T_uUWwW0)

original orbit-flip homoclinic orbit

FIG. 3. Mechanism of generating the Smale horseshoe.
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FIG. 4. A cross section of the attractor at »._, in the original
coordinate for fo, = 25400 Hz. (b) A cross section of the same
attractor at __, in an affine transformed coordinate of x and y
for fo» = 25400 Hz.

tractor, we analyzed a one-dimensional (1D) map numer-
ically obtained by a projection from the attractor to the
interval 7 :[—0.814, —0.798] depicted in Fig. 4(a). Of in-
terest is that the numerically obtained 1D map / — I can
be well fitted using a piecewise linear discontinuous func-
tion, in which I was rescaled to [0.0,0.1] (Fig. 5). The
reason why such piecewise linearity occurs is now un-
der investigation. Figures 5(a)—5(b), respectively, show
the resultant 1D maps for fp, = 25400 and 25396 Hz.
As fo, decreases to fg, the 1D map explosively grows
finer [Fig. 5(b)]. Such rapid growth in the complexity of
the 1D map near fp, (i.e., 8.) coincides with the rapid
increase of the maximum Liapunov exponent as fo, de-
creases to fo, [7].

In summary, this Letter reports the discovery of a
new class of chaotic dynamics arising from the orbit-
flip homoclinic orbit generated by a practical nonlinear,
mutually coupled PLL circuit, while also providing an
explanation as to why chaos occurs in a marginal out-
of-lock condition [7]. Because the system’s governing
equation and the resultant geometry of the vector field are
simplistic, its use it expected to lead to novel results when
applied to systems in other fields, e.g., a two-generator
power system modeled by the swing equations [9], or two
interacting bar magnets confined to a plane (see [10] for
the simplified overdamped case).
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FIG. 2. (a) Saddle connection in the piecewise linear flow.
(b) Lock-in dynamics for & > §.. (c¢) Out-of-lock dynamics
for 6 < §..
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FIG. 3. Mechanism of generating the Smale horseshoe.



