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Chaos from Orbit-Flip Homoclinic Orbits Generated in a Practical Circuit
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Department of Electronics and Communication Engineering, Waseda University, Shinj uku ku, -Tokyo 169, Japan
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A new class of chaotic systems is generated in a practical, nonlinear, mutually coupled phase-locked
loop (PLL) circuit. Theoretical results make it possible to understand experimental results of such
PLL's on the onset of chaos using the geometry of the invariant manifolds, while the resultant simple
geometry and complex dynamics is expected to have applications in other areas, e.g. , power systems or
interacting bar magnets. The 1D map projected from a numerically obtained attractor indicates the ex-
istence of a piece-wise linear structure having a sensitive dependence on the bifurcation parameter fo2.

PACS numbers: 05.45.+b, 84.30.Ng, 84.30.Qi, 84.30.Wp

Much research has been directed at investigating the
dynamical behavior occurring when a homoclinic orbit
unfolds. Shil'nikov's theorem straightforwardly shows the
existence of the Smale horseshoe near a homoclinic orbit
under a specific eigenvalue condition of the linearized
matrix located at the saddle-focus fixed point [1]. On the
other hand, for a homoclinic orbit arising from a saddle
fixed point located in a three-dimensional (3D) vector field,
studies aimed at elucidating this phenomena have only
been carried out primarily from a mathematical standpoint
in which the following generic conditions are considered
to hold: (1) The homoclinic orbit 1 (t) is tangent to the
eigendirections e' and e' associated with the principal
eigenvalues A' and A' as t ~~; (2) A' 4 ~A'~; and
(3) the stable manifold W'(0) at 0 transversely intersects
with the two-dimensional (2D) extended unstable manifold
W"(0) along the homoclinic orbit, where W'"(0) is
tangent at 0 to the linear space spanned by e' and e'.

Under conditions (1)—(3), nonexistence of homoclinic
doubling bifurcation is proven [2]. However, if one of the
above conditions is broken, complex dynamical behaviors
are known to occur [3—6], namely, the homoclinic orbit is
called orbit fiip or inclination fiip when conditions (1) or
(3) are broken, respectively. Results have been obtained
regarding the Smale horseshoe in an unfolding of the orbit-
fiip homoclinic point [4] or inclination-fiip homoclinic
point [5]. Kokubu and Oka [4] investigated the unfolding
of the orbit-flip homoclinic point and demonstrated the
existence of the Smale horseshoe and invariant foliation,
while Homburg, Kokubu, and Krupa [5] showed in an
unfolding of the inclination-Hip homoclinic point that
N-homoclinic bifurcation occurs under some eigenvalue
conditions of the linearized matrix located at the saddle
fixed point. lori's [6] detailed numerical study was the
first to confirm such bifurcation for the orbit-Hip case using
a piecewise linear ordinary differential equation (ODE).
However, resultant chaos from the orbit-flip homoclinic
orbit has not yet been identified to occur in a concrete
system, i.e., one possessing associated chaotic dynamics
unfolding from the orbit-Hip homoclinic orbit. This led to
the present Letter which describes a real, practical system
that possesses chaotic behavior for modeling orbit-flip
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Mutually coupled PLL's possess chaotic dynamics for
a wide range of realistic parameters. Although not syn-
chronized, they are close to synchronization, i.e., they
are marginally out of lock as described by Endo and
Chua [7]. These researchers carried out experiments using

FIG. 1. Triangular phase detector characteristics.

homoclinic bifurcation. In addition, the system s Smale
horseshoe generation mechanism is explained.

Throughout this Letter, phase-locked loops (PLL's) are
considered that incorporate a voltage controlled oscillator
(VCO), a phase detector (PD) having triangular character-
istics (Fig. 1), and a loop filter (LF) comprised of a sim-
ple RC filter with transfer function F(S) = 1/(1 + r5).
Such PLL's can be connected to form mutually coupled
PLL's, which are frequently used in practical communica-
tion systems to synchronize geographically separated tim-
ing clocks. The following fourth-order ODE describes the
dynamics of the phases of such PLL's:

xi + 2/ixi + h(xi —x2) = 6,
(1)

x2 + 2124rl /r2x2 + (rl /r2)h(x2 xl ) (rl /r2) ~

where x~ and x2 are normalized variables from phases @~
and @2 of PLL 1 and PLL 2, respectively. g&, g2, r&t, r2,
and 6 are also normalized parameters of PLL 1 and PLL
2, while h is a 2~-periodic triangular function (Fig. 1).
Equation (1) can be normalized to give
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x =AIx+A2y,
1t = Bo + B~x + B2y —h(z), (4)

z=P+y,
where A) = (n /P~ —n~/P )P /2, A2 = (P /Pp-
P-I/3 ) /2, B. =-7-/P- =~, -B =- P /2/3-., --
and Bq = —(n /P~ + n~/P )P /2. Although h(z) can
be either sinusoidal or triangular depending on the type
of employed phase detector, only the triangular function
is considered here.

Since Eq. (4) is 2~ periodic with respect to z, let us
concentrate on the region D = ((x, y, z)I —~ —6 ~ z ~
~ —6), in order to examine the geometric structure of
the defined vector field. Region D can be divided into
three segments, D+, Dp, and D, respectively, defined by
D+ = t(x, y, z)I~/2 ( z —~ —~), Do = ((x, y, z)IIzI—
~/2), and D = t(x, y, z)I —~ —6 ( z ( —~/2),
where the vector field in each segment is linear. Further,
denote the planes f(x, y, z)Iz = +.7r/2) as P+, and g
respectively. From Eq. (4) and the form of h(z), it fol-
lows that a unique equilibrium point at 0+, Op, 0 exists
in D+, Dp, D, with their positions being, respectively,

0 = (0, 0, ~sr —6), Op = (0, 0, 6). (5)
Here, attention is focused only on one of the three sets

of haotic parameters experimentally obtained by Endo
and Chua I7]:

g) == 0.614, g2 = 0.331,

fpi = 18250 Hz, fpp = 25400 Hz,

ri = 45500/12500, r2 = 5.027/5. 298,

6 = 2~ (f pi
—fp2) /(45 500 + 12 500),

leading to

(6)

real PLL integrated circuit modules as well as perform-
ing corresponding numerical simulations. Consequently,
they numerically showed the existence of the positive Li-
apunov exponent, and also described the resultant broad-
band power spectrum generated by the real circuits.

Physically, Eq. (2) describes a class of mutually cou-
pled nonlinear oscillators with 2~-periodic odd functions.
It should be noted that symmetry reduces Eq. (2) to a
third-order ODE, namely, by introducing Pi = pi + p2,
P. =

P&
—P2, Q~ = q~ + q2, and Q& ——

q~
—q2, Eq. (2)

becomes

Qi = Pi, (3a)

Q2 = Pz, (3b)

Pi = —(niPi + n Pp)/2 —p h{Q2) + 7~, (3c)
P2 (n —Pl + n+P2)/2 —P+h(Qz) + 7-, (3d)

where n+ = n~ + n2, n = n~ —n2, P+ = P~ + P2,
P — P~ P2 7+ 7& + 72 and 7— 71 72.

Note the solut&on for P~, Pq, and Q2 can only be
determined by Eqs. (3b)—(3d). Next, we employ the
transformation x = P&/P —P2/P+, y = Pq//3+, and
z = Qq, which reduces Eq. (3) to the following third-
order ODE:

Ai = —1.242187, A2 = —0.038378,

&) = —0.020119, B2 = —1.282425,

Bo = ~ = —0.774565, P+ = 4.836228.

(7)

The set of parameters in Eq. (7) corresponds to the real
eigenvalues A„A„,and A, of the linearized matrix of the
vector fields at 0+ and 0 . These are obtained by solving

—A(A —A))(A —B2) + p~(A( —A) + AgB(A = 0, {8)
giving (A„A,„A„)= (—1.241990, —2.932221, 1.649599).
In segment Dp, the real eigenvalue A] and the pair of
complex-conjugate eigenvalues A2 q are obtained by

—A(A —A, )(A —B,) + P+(A —A, ) + A, B, A = 0, (9)

giving (A~, A23) = (—1.242387, —0.641 1124 ~ 2.013 431i)
The corresponding eigenvectors (x, y, z) to the above
eigenvalues determined the invariant mani folds
W'(0 ), W'(Op), E(Oo), and W"(0 ), and the extended
unstable manifold W'"(0+). Figure 2(a) schematically
depicts these invariant manifolds, where W'(0 ) and
W"(0+) are planes, respectively, spanned by e' and
e", or by the eigendirections e' and e', giving the lines
W'(0 ) 8 P and W"(0+) f1 g+. From Eqs. (5),
(8), and (9), it is evident that the positions of 0+, Op,
and 0 depend only on the parameter 6, and that the
eigenvalues (vectors) are not dependent on B. Hence, if
we only change 6, i.e., the free-running angular frequency
fp2 of PLL 2, then W'(0 ), W'(Op), E(Op), W'(0 ),
and W'"(0+) do not change their normal vectors or
directions, though they are shifted in the z direction by
the position changes of 0, 0+, and Op. Therefore,
a critical parameter 6, is expected to exist under the
following situation: {i) The intersecting point p+ of P+
and W'(0+) is mapped onto the intersection of W'(0 )
and g by the linear flow in Dp for 6 = 6, IFig. 2(a)]. If
6 4 6„the following situations are expected to occur de-
pending on whether 6' ( 6, or 6 ) 6, : (ii) for 6 ) 8,. ,
p+ is mapped to the half-space containing Op separated
by W (0 ), as shown in Fig. 2(b), or (iii) for 6 ( 6,. ,

p+ is mapped to the opposite half-space separated by
W'(0 ). Situation (i) leads to a set of two nonlinear
(finite dimensional) equations derived from the solution
of Eq. (4) in Dp, where fp2 and the time interval T, in
which P+ is mapped from g+ to g, are unknown. By
using the parameter values of fp~, g~ 2, and r~ 2 in Eq. (6),
6, (i.e., critical frequency fpz) for situations (i) can be
obtained by solving these nonlinear equations, giving

fpp = 25 395.327, T = 0.787 206 . (10)

From Eqs. (6) and (10), 6, = —0.774058. When 6 = 6,. ,
the point mapped from p+ to the intersection of W'(0 )
and P asymptotically goes to 0, because A„.( A, (
0. Thus, situation (i) indicates that a saddle connection
exists between 0+ and 0, as shown in Fig. 2(a). Such
a connection can be considered as a homoclinic orbit if
0+ and 0 are identified. When 6 is slightly larger than6„the orbits from the neighborhood of p+ go to the
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tor at &, in the originalFIG. 4. A cross section of the attractor a

r = 25400 Hz. (b) A cross section of the same
f d di f dattractor a ~, it ~ in an affine transforme coor ina

for f&2 = 25400 Hz.

tractor, we ana yanalyzed a one-dimensional (1D map numer-

ically obtaine y a p r od b a projection from the attractor o
1 I:[—0.814, —0.798] depicted in Fig. 4(a). 0 in-interval I:&

~—

ma I ~ I cancrest is that the numerically obtained 1D map
b 11 fitted using a piecewise linear discoe we

hich I was rescaled to [0.0,0.1] (Fig. ).i . 5. Thetion, in w ic w
is now un-reason why such piecewise linearity occurs is

—5 b res ectively, shower inve
the resultant 1D maps for fo2 = 25400 andnd 25396 Hz.

finer Fig. 5(b)]. Such rapid growth in the complexity of
( . 6 ) coincides with the rapidthe 1D map near foz (i.e.,

increase o e mf th aximum Liapunov exponent as fo2 e-
creases to fo2 [ ].

of athis Letter reports the discovery o aIn summary, is
new class of chaotic dynamics arising from t e or i-
fiip homoclinic orbit generated by pa ractical nonlinear,
mutually coup e1 d PLL circuit, while also providing an

explanation as to w y c ah haos occurs in a margina out-

of lock con stion-d' '
n [7]. Because the system's govermng

e uation and the resultant geometry of the vector e are
ted to lead to novel results whensimplistic, its use it expec e o

applied to systems in other fields, e.g. , -ga two- enerator
deled b the swing equations [9],or two

interacting bar magnets confined to a plane (see or
the simplified overdamped case).

d d to Professor S. OishiS ncere gratitude is exten e1

f r K. Horiuchi, Waseda University,r o, for theirand Pro essor . o
ssor T. Endo, Meijivaluable comments, and also to Professor . n o,

1342

0.0

from the attractor near theFIG. 5. One-dimensional map from
orbit-Ilip homoclinic orbit for various fo2 values. (a) f&» =
25400 Hz and (b) fop = 25396 Hz.

U rsity Professor H. Kokubu, yK oto University;niversi y, a, it ' andT. Matsumoto, Waseda Universi y,Professor . a
r theirS.H. Strogatz, Cornell University forProfessor . . ro

s corn leted at theb fi 1 discussions. This work was comp e e aene cia
x S stems, "worksho "Various Approach to Complex ywor s op ari

held at the international Institute for A vr Advance Studies
(Kyoto-Osaka-Nara, Japan) in 1994.

[1] L. P. Shil'nikov, Sov. Math Dokl. 6,1. 6 163 1965).
[2] J.W. Evans, . enic e,~ E, N. Fenichel, and J.A. Feroe, SIAM J. Appl.

Math. 42, 219 (1982).
[3] E. Yanagida, J. Diff. Eq. 66, 243 (1987).
[4] H. Kokubu and H. Oka (to be published).

and M. Krupa (to be[5] A. J. Homburg, H. Kokubu, and . p
ubli shed).

iua and T. Matsumoto, in Structure and[6] K. Iori, E. Yanagi a, an
Bifurcations of Dynamical Sy, '

b . s
' al 5 stems, edited by . s i i,

Advanced Series in Dynamical System.ms Vol. 11 (Wor
Scientific, Singapore, 19,p.93 . 82.

[7] T. Endo and L. O. Chua, IEEE Trans. , CAS Vol. 37, o.

[8] M. Kisaka, H. Kokubu, and H. Oka, J. Dynam. i

9] F. M. A. Salam, J.E. Marsden, and P. P. araiya,
~AS Vol. 31, No. 8, 673 (1984).

(Add[10] S.H. Strogatz, Nonlinear Dynamics an aos
Wesley, Massachusetts, 1994), p. 286.






