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Modelock-avoiding synchronisation method

H.-A. Tanaka and A. Hasegawa

A simple synchronisation method avoiding the modelock phenomenon
has been realised using dynamic network coupling. Two-dimensional
arrays of millimeter-wave power-combining and beam-scanning
control systems are considered as an application of the method. The
effect, limitations and robustness of the proposed method are inves-
tigated numerically.

Introduction: Networks of interconnected oscillators emerge in a
wide range of engineering issues. Examples are known in milli-
metre-wave power-combining and beam-scanning control systems
[1], a novel VLSI clocking [2], and Josephson junction arrays,
where implementation of two-dimensional (2D) synchronous arrays
has been a technical challenge since a number of oscillators are
packed in a limited space and are required to oscillate in unison. As
opposed to one-dimensional (1D) linear arrays of oscillators, planar
arrays of oscillators can sometimes exhibit 2D phase-lagged stable
synchronous patterns called modelock or travelling (spiral) waves.
This modelock has been a notorious hazard since it hampers the
desired in-phase synchronisation of the oscillator arrays.

- In a 2D array of voltage-controlled oscillators (VCOs) for VLSI
clocking [2], modelock is avoided by adding a special phase detector
(PD) the response of which decreases monotonically beyond a.phase
difference of 7/2 to each VCO. However, in solid-state circuits such as
MESFET oscillators for millimetre-wave generation, the interaction
between oscillators is due to the ‘injection-locking” mechanism and
the resulting synchronisation characteristics (corresponding to the PD
response) come from the intrinsic nonlinearity of the oscillator. Thus, in
such cases avoiding modelock by tuning the synchronising character-
istics may not be straightforward (if not impossible), as opposed to the
case of the VLSI clocking circuit.

In this Letter we propose an alternative synchronising method that
avoids modelock by introducing dynamic coupling with only on—off
switches to the array (see Fig. 1). The basic idea comes from the
observation that nonregular (percolation-like) 2D networks of oscilla-
tors attain the in-phase synchronisation state by destruction of the ‘core’
of the spiral wave pattern (centre of the modelock). Systematic
numerical simulations are carried out to consider the effectiveness of
the method for possible applications to millimetre-wave power-combin-
ing and beam-scanning control systems. The limitations and robustness
of the method are also investigated.

Phase dynamics in 2D oscillator arrays: We assume here a weak
coupling between adjacent oscillators, and sufficiently uniform oscil-
lator characteristics. Under such conditions, a systematic derivation of
the phase equation for oscillators can be made (e.g. see [1]), which
) everjtu\:illy takes the following form:

where 0; and w; represent the oscillation phase and free-running
frequency of the ith oscillator, respectively. Aw,, is interpreted as
the locking range of each oscillator which is assumed to be small and
the same for all oscillators. The phase lag @ reflects signal delay,
which cannot be neglected for the case of radiative coupling.
However, if the coupling is made by one-wavelength waveguides, @
is assumed to be 0 and we focus on this case. The above discussion is
valid for any network topology. For the 2D oscillator array with
switched coupling as shown in Fig. 1, (1) can be modified to the
following phase equation

0; = w; + Aw,, 3 S;S; sin(® + 6, - 6)) 0))
J

where the additional parameter S; takes 1/0 depending on the on/off
states of the switch between the ith oscillator and the coupling
network. The summation ), is taken for adjacent (jth) oscillators
to the ith oscillator. Here, we assume each switch independently takes
the on/off states alternatively for a time span T,,/T,z, respectively. It
is clear that if all switches are on, (2) reduced to (1). Conversely, if all
switches are off, (2) becomes 6; = w;, which implies that all oscilla-
tors are free-running. Between these two extremes, we have inter-
mediate states where any two oscillators with S;=1 are connected by
the network and a certain amount of oscillators with S;=0 are
disconnected from the network, forming a percolation-like, global
network of interacting oscillators.
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Fig. 1 2D square array oscillators with switched couplings
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Fig. 2 Coherency distribution of o after 12 000-cycle oscillations

We performed numerical simulations of (2) for two cases of
(Ton, T, =350, 150) and (T, Top) =(500, 0), respectively, where
100 trials are made for 30x30 oscillator array networks with random
initial oscillation phasers and switching states. The natural frequencies w;
are chosen uniformly from [0.95, 1.05] at random. To measure the degree
of phase synchronisation, the phase coherency o is introduced as follows:

0, = w, + Aw,, Y sin(® + 0, — 0;) (@) g= i S; exp(i0;) l/% S; 3)
J j=1 j=1
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It is noted that ¢ = 1 corresponds to the in-phase synchronised state and
the lower coherency o indicates loss of in-phase synchrony. Fig. 2 shows
the result of this simulation (after 12000-cycle oscillations). A clear
difference is observed between the case of (T,,, T, = (500, 0) and the
case of (T, Top) = (350, 150). The former has a widespread coherency
distribution, which is due to the generation of modelock (sometimes
several spiral coexist in the array.) Conversely, the latter has a sharp
distribution below ¢ = 1, where no modelock remains and all (connected)
oscillators exhibit in-phase synchronisation.

Such avoidance of modelock in switched array networks can be
explained as follows. Figs. 3a and b shows typical examples for cases
without control oscillators, and with control oscillators attached to the
outside of the array, respectively. (For the latter case, driving frequen-
cies w; of the control oscillators are gradually set to be low to high from
the top to the bottom of the array shown in Fig. 3b.) In both cases of
Figs. 3a and b, it is observed that (i) initially, (multiple) stable spiral
waves exist (at this stage all switches are on), (ii) shortly after the
switching is initiated, some cores of the spiral waves are destroyed or
moved, (iii) the spiral waves continue to be destroyed, (iv) finally they
are lost and a coherent pattern is stabilised, and (v) at this stage, we
obtain completely coherent patterns by making all switches on again.

R (i) ™) )
b

Fig. 3 Synchronisation process to coherent patterns in 2D array
oscillators

a Without control oscillators
b With control oscillators

Discussion: In the above simulations of (2), the case of ®=0 is
considered. We also considered cases of ®=0.017 and 0.17, model-
ling mismatches to one-wavelength interconnections. For the
®=0.01n case with 30x30 arrays, several per cent of the trials did
not converge to the completely coherent state (at least for 12 000-cycle
oscillations). 10x10 and 20x20 arrays are also simulated under the
same conditions, and 100% convergence is obtained for ®=0.017.
This implies that smaller arrays have better in-phase synchrony, and
this is what the simulation in [3] reported. In the case of ®=0.17,
none of 10x10, 20x20, and 30x30 arrays converged to the in-phase
state, suggesting a certain upper limit of ® beyond which the
presented method is no longer effective.

For more effective synchronous network topologies, we performed
simulations of (2) on triangular lattice networks under the same
simulation protocol as that mentioned above. As opposed to the
above square lattice cases, triangular lattices show better in-phase
synchrony, e.g. 10x10, 20x20, and 30x30 oscillator arrays with a
® =0.17 phase delay have shown 100% in-phase synchrony.

Conclusions: Although a theoretical study has not been completed,
systematic numerical simulations support the efficacy of the presented
method for avoiding modelock. The required switches are expected to
be realised using simple circuitry.
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Channel capacity of bit-interleaved coded
modulation schemes using 8-ary signal
constellations

S.Y. Le Goff

The object of the work described was to determine the 8-ary signal sets
that maximise the coding gains achieved by power-efficient bit-
interleaved coded modulation (BICM) schemes over an additive
white Gaussian noise channel. To this end, the channel capacity
limit of BICM for several 8-ary constellations has been evaluated. It
is shown that the most suitable constellation for designing a BICM
scheme depends on the desired spectral efficiency of the system.

Introduction: Bit-interleaved coded modulation (BICM) is a band-
width-efficient coding technique made up of serial concatenation of
binary error-correcting coding, bit-by-bit interleaving, and high-order
modulation using Gray or quasi-Gray labelling [1]. BICM has proven
to be a very power-efficient approach provided that state-of-the-art
codes, such as turbo codes [2] or low-density parity-check codes
[3, 4], are employed [5]. It is possible to design BICM schemes by
employing any two-dimensional signal constellation. However, some
recent studies have indicated that the choice of the signal set may have
a strong influence on the error performance of the system [6]. In this
Letter, we address the problem of finding the most suitable 8-ary
constellations for designing BICM schemes, on additive white Gaus-
sian noise (AWGN) channels, using the concept of capacity limit. The
idea of evaluating capacity limits to find the best signal set comes
from the fact that power-efficient BICMs usually employ state-of-the-
art codes, and are thus capable of achieving near-capacity perfor-
mance. As a result, the actual error performance of these BICMs can
be predicted accurately by evaluating their capacity limits.

Capacity limit of BICM schemes using various 8-ary signal sets:
Consider a 2™-ary modulation modelled by a two-dimensional signal set
Sofsize |S|=2".Letc={cy,...,cm} € {0, 1} denote a set of m bits
at the modulator input, and y the corresponding channel output. Based
on some general results given in [1], we can demonstrate that, under the
constraint of uniform-input distribution and assuming ideal (infinite-
depth) bit-by-bit interleaving, the capacity C of a BICM system using
2™-ary constellation is expressed over an AWGN channel as

(zeol(-%))

m — log, -

1 5 on(-%)

i=lsesS;,,

C=E

- ey

(O]

where E., denotes expectation with respect to ¢ and y. d,; is the
Euclidean distance between y and a signal s € S, and S;,c, denotes the
subset of the signals s € S the labels of which have the value c; € {0, 1}
in position i € {1, ..., m}. Finally, ¢? is the variance of complex zero-
mean Gaussian noise. Capacity is here expressed in information bits per
channel use, where a channel use corresponds to the transmission of a
signal s € S.

From (1), it is possible to evaluate the capacity limit of BICM for any
two-dimensional constellation and thus determine the signal sets that
maximise the coding gains achieved by power-efficient BICM schemes.
In this Letter, the BICM capacity is evaluated for several 8-ary signal
sets using Monte Carlo integration of (1). The 8-ary constellations that
are considered in this work are 8-PSK, rectangular, (4, 4) with a ring
ratio of 1.93, optimum, (1, 7), triangle, and 8-cross [7, 8]. All except the
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