Locking Range Derivations for Injection-Locked Class-E Oscillator Applying Phase Reduction Theory

Tomoharu Nagashima, Xiuqin Wei, Hisa-Aki Tanaka, Hiroo Sekiya
IEEE Transactions on circuits and systems-I: Regular Papers, 2014.

Keyword

Injection-locked class-E oscillator, locking range, phase reduction theory

Abstract

This paper presents a numerical locking-range prediction for the injection-locked class-E oscillator using the phase reduction theory (PRT). By applying this method to the injection-locked class-E oscillator designs, which is in the field of electrical engineering, the locking ranges of the oscillator on any injection-signal waveform can be efficiently obtained. The locking ranges obtained from the proposed method quantitatively agreed with those obtained from the simulations and circuit experiments, showing the validity and effectiveness of the locking-range derivation method based on PRT.

Download PDF

Figures at a glance

References

  1. D. Ahn and S. Hong, “Class-D CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3105--3119, Dec. 2013.
  2. J. Ebert and M. Kazimierczuk, “Class E high-efficiency tuned power oscillator,” IEEE J. Solid-State Circuits, vol. SC-16, no. 2, pp. 62--66, Apr. 1981.
  3. D. V. Chernov, M. K. Kazimierczuk, and V. G. Krizhanovski, “Class-E MOSFET low-voltage power oscillator,” in Proc. IEEE ISCAS, Phoenix, AZ, May 2002, vol. 5, pp. 509--512.
  4. M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, “Class-E MOSFET tuned power oscillator design procedure,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1138--1147, Jun. 2005.
  5. H. Hase, H. Sekiya, J. Lu, and T. Yahagi, “Novel design procedure for MOSFET class-E oscillator,” IEICE Trans. Fund., vol. E87-A, no. 9, pp. 2241--2247, Sep. 2004.
  6. V. G. Krizhanovski, D. V. Chernov, and M. K. Kazimierczuk, “Lowvoltage electronic ballast based on class E oscillator,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 863--870, May 2007.
  7. L. R. Nerone, “Novel self-oscillating class E ballast for compact fluorescent lamps,” IEEE Trans. Power Electron., vol. 16, no. 2, pp. 175--183, Mar. 2001.
  8. H. Hase, H. Sekiya, J. Lu, and T. Yahagi, “Resonant dc/dc converter with class E oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 9, pp. 2025--2035, Sep. 2006.
  9. T. Andersen, S. K. Christensen, A. Knott, and M. A. E. Andersen, “A VHF class E DC-DC converter with self-oscillating gate driver,” in Proc. IEEE APEC, Fort Worth, TX, USA, Mar. 2011, pp. 885--891.
  10. C. M. Zierhofer and E. S. Hochmair, “High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link,” IEEE Trans. Biomed. Eng., vol. 37, no. 7, pp. 716--722, Jul. 1990.
  11. M. Qingyun, M. R. Haider, Y. Song, and S. K. Islam, “Power-oscillator based high efficiency inductive power-link for transcutaneous power transmission,” in Proc. IEEE MWSCAS, Seattle, WA, USA, Aug. 2010, pp. 537--540.
  12. F. Ellinger, U. Lott, and W. Bachtold, “Design of a low-supply-voltage high-efficiency Class-E voltage-controlled MMIC oscillator at C-band,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 203--206, Jan. 2001.
  13. M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, “Injection-locked class-E oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 6, pp. 1214--1222, Jun. 2006.
  14. T. Nagashima, X. Wei, H. Tanaka, and H. Sekiya, “Numerical derivations of locking ranges for injection-locked class-E oscillator,” in Proc. IEEE PEDS, Kitakyushu, Japan, Apr. 2013, pp. 1021--1024.
  15. M. Matsuo, H. Sekiya, T. Suetsugu, K. Shinoda, and S. Mori, “Design of a high-efficiency class DE tuned power oscillator,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 11, pp. 1645--1649, Nov. 2000.
  16. R. A. Adler, “Study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351--357, Jun. 1946.
  17. A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: A complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916--1932, Sept. 2007.
  18. P. Maffezzoni, “Analysis of oscillator injection locking through phasedomain impulse-response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1297--1305, Jun. 2008.
  19. C. T. Chen, T. S. Horng, K. C. Peng, and C. J. Li, “High-gain and highefficiency EER/Polar transmitters using injection-locked oscillators,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 4117--4128, Dec. 2012.
  20. D. Dunwell and A. C. Carusone, “Modeling oscillator injection locking using the phase domain response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2823--2833, Nov. 2013.
  21. P. Maffezzoni, “Nonlinear phase-domain macromodeling of injectionlocked frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2878--2887, Nov. 2013.
  22. P. Bhansali and J. Roychowdhury, “Gen-Adler: The generalized Adler’s equation for injection locking analysis in oscillators,” in Proc. ASP-DAC, Yokohama, Japan, Jan. 2009, pp. 522--527.
  23. A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179--194, Feb. 1998.
  24. Y. Kuramoto, Chemical Oscillations, Waves, Turbulence. New York: Springer-Verlag, 1984.
  25. A. T. Winfree, The Geometry of Biological Time. New York: Springer, 1980.
  26. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, U.K.: Cambridge Univ. Press, 2001.
  27. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Phys. Rep., vol. 366, no. 1/2, pp. 1--101, Aug. 2002.
  28. H. Tanaka, A. Hasegawa, H. Mizuno, and T. Endo, “Synchronizability of distributed clock oscillators,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 9, pp. 1271--1278, Sep. 2002.
  29. M. Bonnin, F. Corinto, and M. Gilli, “A phase model approach synchronization analysis of coupled nonlinear oscillators,” in Proc. ECCTD, Antalya, Turkey, Aug. 2009, pp. 335--338.
  30. M. Bonnin, F. Corinto, and M. Gilli, “Phase model reduction and synchronization of nonlinear oscillators by a periodic force,” in Proc. ISCAS, Paris, France, May 2010, pp. 3385--3388.
  31. M. Bonnin and F. Corinto, “Phase noise and noise induced frequency shift in stochastic nonlinear oscillators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2104--2115, Aug. 2013.
  32. A. Buonomo and A. L. Schiavo, “Analytical approach to the study of injection-locked frequency dividers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 1, pp. 51--62, Jan. 2013.
  33. A. Buonomo, A. L Schiavo, M. A. Awan, M. S. Asghar, and M. P. Kennedy, “A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3126--3135, Dec. 2013.
  34. T. Suetsugu and M. K. Kazimierczuk, “Comparison of class-E ampli- fier with nonlinear and linear shunt capacitance,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 8, pp. 1089--1097, Aug. 2003.