Synchronization limit of weakly forced nonlinear oscillators

Hisa-Aki Tanaka
Journal of Physics A: Mathematical and Theoretical, Sep. 2014.


synchronization, entrainment, injection-locking, fundamental limit, Arnold tongue, optimization, Holder's inequality


Nonlinear oscillators exhibit synchronization (injection-locking) to external periodic forcings, which underlies the mutual synchronization in networks of nonlinear oscillators. Despite its history of synchronization and the practical importance of injection-locking to date, there are many important open problems of an efficient injection-locking for a given oscillator. In this work, I elucidate a hidden mechanism governing the synchronization limit under weak forcings, which is related to a widely known inequality; Holder's inequality. This mechanism enables us to understand how and why the efficient injectionlocking is realized; a general theory of synchronization limit is constructed where the maximization of the synchronization range or the stability of synchronization for general forcings including pulse trains, and a fundamental limit of general m : n phase locking, are clarified systematically. These synchronization limits and their utility are systematically verified in the Hodgkin? Huxley neuron model as an example.

Download PDF

Figures at a glance


  1. Winfree A T and Rethwisch D G 2001 The Geometry of Biological Time 2rd edn (New York: Springer)
  2. Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer)
  3. Pikovsky A S, Rosenblum M G and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
  4. Hoppensteadt F C and Izhikevich E M 1997 Weakly Connected Neural Networks (New York: Springer)
  5. Ermentrout G B and Terman D H 2010 Mathematical Foundations of Neuroscience (New York: Springer)
  6. Kori H, Kawamura Y, Nakao H, Arai K and Kuramoto Y 2009 Phys. Rev. E 80 036207
  7. Kawamura Y, Nakao H and Kuramoto Y 2011 Phys. Rev. E 84 046211
  8. Nakao H, Yanagita T and Kawamura Y 2012 Procedia IUTAM 5 227-33
  9. Sato M, Hubbard B E, Sievers A J, Ilic B, Czaplewski D A and Craighead H G 2003 Phys. Rev. Lett. 90 044102
  10. Feng J and Tuckwell H C 2003 Phys. Rev. Lett. 91 018101
  11. Forger D and Paydarfar D 2004 J. Theor. Biol. 230 521-32
  12. Lebiedz D, Sager S, Bock H G and Lebiedz P 2005 Phys. Rev. Lett. 95 108303
  13. Gintautas V and Hubler A W 2008 Chaos 18 033118
  14. Bagheri N, Stelling J and Doyle F J 2008 PLoS Comput. Biol. 4 e1000104
  15. Gat O and Kielpinski D 2013 New J. Phys. 15 033040
  16. Harada T, Tanaka H A, Hankins M J and Kiss I Z 2010 Phys. Rev. Lett. 105 088301
  17. Zlotnik A, Chen Y, Kiss I Z, Tanaka H A and Li J S 2013 Phys. Rev. Lett. 111 024102
  18. Takano K, Motoyoshi M and Fujishima M 2007 Proc. IEEE Asian Solid-State Circuits Conf. (Jeju, Korea) pp 336-9
  19. Feng X L, White C J, Hajimiri A and Roukes M L 2008 Nat. Nanotechnology 3 342-6
  20. Jackson J C, Windmill J F, Pook V G and Robert D 2009 Proc. Natl. Acad. Sci. USA 106 10177-82
  21. Zlotnik A and Li J S 2014 arXiv:1401.1863
  22. Moehlis J, Shea-Brown E and Rabitz H 2006 ASME J. Comput. Nonlinear Dyn. 1 358-67
  23. Nabi A and Moehlis J 2012 J. Math. Biol. 64 981-1004
  24. Kirk D E 1970 Optimal Control Theory: An Introduction (Englewood Cliffs, NJ: Prentice-Hall)
  25. Tanaka H 2014 Optimal entrainment with smooth, pulse and square signals in weakly forced nonlinear oscillators Physica D: Nonlinear Phenomena at press
  26. Rudin W 1987 Real and Complex Analysis 3rd edn (New York: McGraw-Hill)
  27. Tanaka H A, Hasegawa A, Mizuno H and Endoh T 2002 IEEE Trans. Circuits Syst. I 49 1271-8
  28. Nagashima T, Wei X, Tanaka H A and Sekiya H 2014 IEEE Trans. Circuits Syst. I doi:10.1109/ TCSI.2014.2327276
  29. Matheny M H, Grau M, Villanueva L G, Karabalin R B, Cross M C and Roukes M L 2014 Phys. Rev. Lett. 112 014101
  30. Yoshimura K and Arai K 2008 Phys. Rev. Lett. 101 154101
  31. Goldobin D S, Teramae J N, Nakao H and Ermentrout G B 2010 Phys. Rev. Lett. 105 154101
  32. Magnus J R and Neudecker H 1999 Matrix Differential Calculus with Applications in Statistics and Econometrics revised edn (Chichester: Wiley)