First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems

Hisa-Aki Tanaka and Allan J. Lichtenberg
Physical Review Letters, 1997.


We analyze the collective behavior of a set of coupled damped driven pendula with finite (large) inertia, and show that the synchronization of the oscillators exhibits a first order phase transition synchronization onset, substantially different from the second order transition obtained in the case of no inertia. There is hysteresis between two macroscopic states, a weakly and a strongly coherent synchronized state, depending on the coupling and the initial state of the oscillators. A self-consistent theory is shown to determine these cooperative phenomena and to predict the observed numerical data in specific examples.

Download PDF

Figures at a glance


  1. G. B. Ermentrout, J. Math. Biol. 29, 571 (1991).
  2. A. T. Winfree, The Geometry of Biological Time (Springer, New York, 1980).
  3. K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett. 76, 404 (1996).
  4. Y. Kuramoto, Lecture Notes in Physics (Springer-Verlag, Berlin, 1975), Vol. 39; Chemical Oscillations, Waves, and
  5. Turbulence (Springer-Verlag, Berlin, 1984).
  6. H. Tanaka, A. J. Lichtenberg, and S. Oishi, Physica D (Amsterdam) (to be published).
  7. S. Inagaki, Prog. Theor. Phys. 90, 577 (1993).
  8. M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995).
  9. M. Levi, F. C. Hoppensteadt, and W. L. Miranker, Q. Appl. Math. 36, 167 (1978).
  10. S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1994), p. 273.
  11. S. H. Strogatz, C. M. Marcus, R. E. Mirollo, and R. M. Westervelt, Physica (Amsterdam) 36D, 23 (1989).
  12. S. H. Strogatz and R. E. Mirollo, J. Stat. Phys. 63, 613 (1991).
  13. K. Binder, Rep. Prog. Phys. 50, 783 (1987).